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POTENTIAL FLOW ABOUT ARBITRARY BIPLANE WING SECTIONS

By I. E. GaRrRICK

SUMMARY

A rigorous ireatment is given of the problem of deter-
mining the two-dimensional potential flow around
arbitrary biplane cellules. The analysis involves the
use of elliptic functions and is sufficiently general to
include the effects of such elements as the section shapes,
the chord ratio, gap, stagger, and decalage, which elements
may be specified arbitrarily. The flow problem is re-
solved by making use of the methods of conformal repre-
sentation. Thus the solution of the problem of trans-
forming conformally two arbitrary contours indto two
circles 18 expressed by a pair of simullaneous integral
equations, for which a method of numerical solution is
outlined. It is pointed out that ‘an inverse method of
transforming conformally two circles into the wing pro-
files of a biplane arrangement leads readily to the devel-
opment of related families of biplane combinations. Flow
formulas are developed giving the velocity and pressure
at any point of the surface of either profile of the arbi-
trary biplane arrangement, for any angle of attack. The
theory of the monoplane wing section in potential flow is
shown to be a degenerate case in which the elliptic func-
tions reduce fo irigonometric functions. The general
method presented may be employed to determine the
potential flow in any doubly connected region and hence
may be applied to the single slotted wing or to the auxiliary-
airfoil wing.

As an example of the numerical process, the pressure
distribution over certain arrangemenis of the N. A. C. A.
4412 airfoil in biplane combinations 18 presented and
compared with the monoplane pressure distribution.

INTRODUCTION

It is the purpose of this paper to develop a general
theory of arbitrary biplane cellules of infinite span in
potential flow. No attempt is made here to treat the
case of finite span or to congider viscosity; rather it is
the object of this work to bring the two-dimensional
theory of biplane cellules in uniform, steady potential
flow to the same degree of exactness and generality to
which the two-dimensional monoplane airfoil theory
has been brought. The analysis will be sufficiently
general to include such elements as profile shapes,
chord ratio, gap/chord, stagger, and decalage, and

will contain as special cases the monoplane theory, as
well as the theories of the slotted monoplane wing, of
the auxiliary-airfoil wing, and of the influence of the
ground or plane barriers on a monoplane airfoil in
two-dimensional potential flow.

In order to arrive in a natural manner at a perspec-
tive of the biplane analysis it is advantageous to con-
sider first the simpler case of the monoplane wing
section and to keep in view the essential concepts that
carry over to the biplane analysis. It is well known
that by virtue of the methods of conformal represen-
tation the two-dimensional potentisl flow around s
single obstacle can be obtained by the following
process. In the first place, a standard contour is
selected, the region about which is simply connected
and the flow function of which in uniform potential
flow is known or obtainable. The transformation
must then be found that transforms conformally he
region of the given obstacle into this standard region.
This transformation, in combination with the known
flow function, gives the desired flow function for the
obstacle. In the case of monoplane wing profiles, the
standard flow region may be chosen to be that about
a circle and the theorem which states that it is possible
to transform conformally the contour of the given
obstacle into a circle is known as Riemann’s theorem.
(Cf., for example, reference 1.) In the case of two
obstacles, the region is termed ‘‘doubly connected”
and the process is again applicable except that the
standard doubly connected region is chosen to be the
region about two circles. The theorem that states
the existence of a transformation function bringing
the doubly connected region (region of the biplane
contours) into the region of two circles is Koebe’s
theorem (reference 2).

The flow function giving the uniform potential
flow for a circular cylinder is well known and, in
determining the flow about a monoplane airfoil seetion,
the main problem is the transforming of the airfoil
contour into & circle. In order to attain this result
in a simple manner it is necessary to perform a few
intermediate transformations. The airfoil profile it~
self may be regarded as a contour described about a
conveniently chosen line segment or chord. An
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initial transformation of a simple type exists (the
so-called ‘‘Joukowsky transformation’) that trans-
forms the chord into a unit circle and automatically
maps the airfoil contour into a nearly circular contour
described about the unit circle. There remains then
the final task of transforming the nearly circular
contour into a true circle, and this may be performed
by & method given by Theodorsen (reference 3). This
method leads directly to a simple integral equation
which can be solved by & process of iteration orsuc-
cessive approximations and which converges with
extreme rapidity. (Cf. reference 1.) It is important
in regard to practical considerations to observe that
the method is so powerful that one step in the process
is quite sufficient in all ordinary cases.

The standard doubly connected region has been
chosen as the region about two circles; and it is worthy
of mention that only as recently as 1929 was the
complex flow potential for two circles rigorously
developed (by Lagally, reference 4). Dupont, Bonder,
and Miiller (references 5, 6, and 7) have also con-
tributed to this problem but Lagally’s solution is
the more elegant. The flow function for two circles
being known, the main problem in finding the flow
about a biplane arrangement is the obtaining of the
transformation mapping the two contours into two
circles.

In a manner analogous to the case of the single air-
-foil section, the contours of a biplane arrangement may
be considered to be described about 2 skeleton of two
conveniently placed mean lines or chords. Hence, to
maintain the analogy it is seen that initially it is desired
to find a transformation function which transforms
the two line segments into two circles. This prob-
lem has been touched upon by Kutta who has given the
uniform potential flow for the special case of two paral-
lel equal line segments (reference 8). The transforma-
tion function bringing two circles into any two parallel
line segments has been developed by C. Ferrari (ref-
erence 9). In the first part of the present paper the
more general problem of decalage of the line segments
has been studied and a function developed that trans-
forms two circles into any two nonintersecting line seg-
ments in any relative positions. This function that
transforms the skeleton or chords of the biplane ar-
rangement into two circles also transforms the contours
themselves into two nearly circular contours described
about the skeleton circles. There remains then the
problem of transforming the two nearly circular con-
tours into two true circles. In order to accomplish
this task, the method of Theodorsen is generalized in
the present paper to apply to doubly connected regions
by employing the concentric circular ring region as a
standard region and by utilizing a Laurent series devel-
opment instead of a one-way power series. There is
obtained finally a pair of simultaneous integral equa-

tions expressing the conformal representation of the
two nearly circular contours into two circles, Just
as in the case of the single integral equation in the
monoplane case, there exists an analogous process of
successive approximations or iteration that converges
with the same remarkable degree of rapidity.

The general transformation from the biplane con-
tours to two circles together with the Lagally formula
for the flow about two circles yields an expression for
the velocity and pressure at each point of the surface of
either profile of the biplane arrangement. There are
two arbitrary circulations in the flow formula, viz, the
separate circulations around each contour, and these
are determined uniquely by applying the well-known
Kutta-Joukowsky condition to the trailing edges of both
contours, specifying thereby that the flow leaves these
edges smoothly.

In the case of monoplane wing theory it has been
shown (reference 1) that theoretical shapes can be
conveniently developed by an inverse method of

" transforming conformally a circle into & wing profile.

The Joukowsky airfoils and the other so-called “theo-
retical”’ airfoils are special examples of this process.
In an analogous manner it is possible to develop theo-
retical biplane combinations by an inverse process of
transforming two circles into two contours resembling
wing profiles. A general and flexible method of obtain-
ing these shapes is presented ; the results are especially
instructive in that, in this process, the integral equa-
tions referred to in a preceding paragraph reduce to
definite integrals.

Elliptic functions arise in a natural manner in the
analysis and the problem treated provides & good
illustration of the power and beauty of these remark-
able functions. The general theory of the single,
arbitrary wing section is shown to be a degenerate
case in which the imaginary period of the doubly
periodic elliptic functions becomes infinite, and hence
the elliptic functions reduce to ordinary trigonometric
functions. A few pages are devoted to the monoplane
theory in view of the light that it throws on the more
general biplane analysis.

Numerical results are presented only to furnish an
illustration of the theory. In particular, the pressure
distribution is determined for certain arrangements of

. the N. A. C. A. 4412 airfoil in biplane combinations.

The elliptic functions that arise in the analysis and
that are to be evaluated in a numerical case may
fortunately, when necessary, be developed in rapidly
convergent expansions.

Statement of the problem.—The problem treated in
this paper may be restated as follows, QGiven, an
arbitrary biplane arrangement oriented in a specified
manner in a nonviscous, incompressible fluid medium
and translated with uniform velocity V. To determine
the velocity and pressure distribution in two-dimen-
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sional potential flow in the field of motion for all
angles of attack, particularly, at each point of the
surface of the biplane profiles.

As has been pointed out, it is well recognized that the
aforementioned problem may be treated in two stages.
In the first place, the complex function expressing the
conformal transformation of the region of the biplane
into a standard doubly connected region must be
obtained and, finally, the complex fiow function for
this standard region, which is chosen as the region
about two circles, must be known. The region ex-
ternal to the two contours of a biplane arrangement
will be brought into the region about two circles by the
intermediate use of two nearly circular contours.
Before this result can be accomplished, however, it is
desirable to discuss several preliminary transforma-
tions.

1. PRELIMINARY TRANSFORMATIONS

First, the transformation bringing the region external
to two nonintersecting circles (¢ plane) into the annular
region between two concentric circles (w plane) will be
obtained. This annular region will then be mapped
into a rectangular region (s plane) and the rectangular
region into the region about two line segments (u
(See fig. 1.)

plane).

w plane
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AP’ fce’ 8]

49

The curves ry/r,=constant are circles with centers
lying along the #; axis (theorem of Apollonius). This
family of circles contains the points @, and @, as
Limiting circles of zero radius. For points in the
upper half plane ({;°>0) we have rs/r;>>1, for points in
the lower half plane r./r;<{1, while on the #, axis,
rofri=1. The curves given by ys;—v,=constant also
form o family of circles (theorem of the constant angle
subtended by the chord of a circle) which is orthogonal
to the first system and each circle of which contains
the limit points @, and @; on its circumference.

A new complex variable w=ce** is now introduced
by the following relation

Hence
—log?
u g1'1 (3)
0=vs—m
Also
. wtec
t=ic_—— )

These equations transform conformally the coaxial
system of circles of the ¢ plane into a concentric system
of circles in the w plane. In particular, two circles I
and K, in the ¢ plane, K; located in the upper half

y7i
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I- o =F0/2
1
i e oi Fi A —" H——X
| o
i BUA Cy
! L
]
{
&) {d)

F10URE 1,~-Mapping of: (8) two coaxial circles in the ¢ plane into (b) two concentric cirales in the to plane, (¢) rectangular reglon In the 8 plane, (d) two line
sagments in the u plane.

Transformation of a coaxial system of circles into a
concentric system.—A coaxial system of circles may
be described most simply by the use of bipolar coordi-
nates. Consider a complex ¢ plane where =i+ ;.
Let @, (0, i¢) and @, (0,—1c) located on the #; axis be
the origins of two polar coordinate systems r,,y; and
r9,72. 'The variable ¢ may be written in the two forms:

t=1ic+r 1= —1c-}rees
Then in the relation

t+ic_r
i.—= 26“71"71)

there are expressed in a convenient form, the bipolar

coordina.tee:%:and y2—7v:. (Seefig. 1 (a).)

plane and Kj; in the lower half plane and defined by
log ry/ri=c.and log »3/r,=— B, respectively («>0, >0),
transform into two concentric circles B, and B; about
the origin in the w plane, of radii ce= and ce™5, respec-
tively (fig. 1 (b)). It is noted also that the ¢; axis
transforms into the circle of radius ¢ in the w plane,
and that the region at infinity in the ¢ plane maps into
the neighborhood of the point w=c. It may also be
remarked that the circles orthogonal to K; and K,
transform into radisl lines through the origin.

Transformsation of the circular systems into rectan-
gular systems.—There is now introduced another vari-
able s$=X\4-i» defined by the relation

t-4-1c

— )

s=1log z—o=i log
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Separating into real and imaginary parts
A=—(712—71)=—"0
r
V=10g-;3=y.

(6)

Ilence the variable s may hereafter be denoted by
8=—~0-+1u or also by s=A+}iu
Also from (5) we have

w=ce™ "

o f14+e™ 8
i= l_a,L:)——ccotz

The circles in the ¢ plane, r,/r;=constant (or the
circles in the w plane cer=constant), correspond
uniquely to the straight lines y=constant in the s
plane. In particular, the limiting points @; and Q.
correspond to p=e and p=—=, respectively. Also
the ¢, axis corresponds to the axis u=0, the point at
infinity in the ¢ plane going into the origin s=0.
The circular arcs v;—vys=constant between @, and @,
correspond to the lines A=constant. It is noted, how-
ever, that this latter correspondence is infinitely many-
valued since the addition of integral multiples of 2= to
1 or s does not alter the circular arc considered;
hence, vy;—+vy.=constant corresponds to the infinite
number of parallel lines A=constant+2kz, where %
is any integer (fig. 1 (c)).

The whole ¢ plane has thus infinitely many values
on the & plane, but there is a one-to-one correspondence
between the whole { plane and a strip of width 2=
bounded by two parallels to the u axis. In the fol-
lowing investigation, the strip in the s plane bounded
by the lines A=—= and A== will be considered as
the representation of the ¢ plane cut along the length
@ Qs

Equation (5) thus defines a conformal transforma-
tion of the coaxial system of circles in the ¢ plane, or
of the concentric system of circles in the w plane, to 2
rectangular system in the s plane. In particular, con-
sider again the two’ definite circles K; and K; of the
coaxial pencil. The circle K, is defined by log ry/ri=
p=c and the circle K; by log r3/r;=u=—p8 where « and
B are positive constants. It is then noted that the
region of the ¢ plane external to the circles K; and K,
(or the ring region within B, and B;) corresponds
uniquely to the rectangular region bounded by the
lines p=«a, p=—8, A=—m, and A=x. (The two sides
A=—z and A== correspond to the right and left
edges respectively of & cut along the #; axis drawn
between the two circles.) The rectangle contains,
necessarily, the point 8=0 as an internal point.

Geometrical relations.—Attention may be momen-
tarily diverted to some geometrical relations existing
in the various planes. Let the radii of K; and K. be
a and b, respectively, and let the centers of K; and K,
be situated at O, and O, respectively (fig. 1 (2}).

Q)

and

®)
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The quantities @ and b may be expressed in terms of
a« and 8. The equation of K; in bipolar coordinates
is, by equation (2)

t-+ic

Ty
t—1ic

™

e

Writing §=¢,-}1, there results upon expansion
i12+t32—2dg coth a-l-62=0

which is the equation of a circle whose center 0, is
situated at

to=c coth «
and whose radius is

a=c csch «

Similarly, for the second circle K, the center 0, is at

tg=—c coth 8
and the radius is
b=c csch 8
Denoting by d the center-to-center distance 0,0,
(fig. 1), there meay be written the equations:

a=c csch «

b=c csch 8

d=c (coth a-+-coth 8)
which suffice to fix @, b, and 4 in terms of «, 8, and c.
Forming the auxiliary quantity d®*—a*—b3, it is found
that *—a?*—b¥=2abcosh{e+p£) Itimmediately follows
that

®

=2 sinh (a+6)

sinh a=] sinh (a-+-) (10)

sinh p=7 sinh (a-+-f)

We observe that the quantity «+8 on the right-hand
side is expressed in terms of a, b, and d by the relation
P—a*—b*
cosh (a+-f)=—a—7—

2. TRANSFORMATION OF TWO CIRCLES INTO TWO
ARBITRARY LINE SEGMENTS

The transformation that maps the rectangular region
in the s plane into the region external to two noninter-
secting line segments in & % plane will now be derived.
In combination with the preliminary transformations
of the preceding section this result will then transform
the region of the two circles K; and K. of the ¢ plane,
or the ring region of the w plane, into the region of
the line segments. Let the « plane (fig. 1 (d)) contain
the two line segments ¢; and ¢; and let % () =X-}1Y be
the analytic function that transforms the circles K,
and K, into the desired line segments. With no loss
in generality, the system of coordinates in the « plane
may be so chosen that the X axis is parallel to ¢;. Let
the line segment ¢, be inclined at an angle —§/2 with
respect to the X axis. (The negative sign before &
is & matter of later convenience; fig. 1(d)) may be
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regarded as illustrating the definition of positive
decalage.) Let I; and I, denote the two lines p=«
and p=—p of the rectangular s plane that corre-

spond to K, and K, then, it is evident that 23=0
for points of K; or /; and %=—tan g for points along

K orl,. Let f(s)=g1—; be the derivative of the func-

tion u(s) that gives the desired correspondence between
the « and s planes. From the well-known property of
conformal mapping, viz, that tangents at correspond-
ing points in the two planes differ in direction by the
argument of the derivative function, it follows that
the argument of f(s) equals 0 (or ) along /; and equals

—5/2 (or — §/2-) elong [, or
f(8) is a real quantity along I,
F(8)e®? is a real quantity along I,

By a principle of Schwarz the as yet undetermined
function f(s) has the property of being extended by
analytic continuation to the whole strip region in the
s plane (fig. 1(c)) for, since f(s) is real along I, its
values for a pair of reflected points mirrored in the
line I, are conjugate complex. Similarly the function
f(8)e®? may be reflected about the line I,. With
successive alternate reflections in 7, and I, f(s) takes
on values as shown in figure 2. For every two succes-
sive reflections the original values of f(s) are repeated
except for & multiplying factor e~®%. Hence it is clear
that f(s) must satisfly the relation

S8+2i(a+-B)l=f(s)e™® ®

Also, since f(s) is a single-valued function of ¢, it
satisfies the condition

H(8+27)=f(s) @)

If =0, then e~*==1 and it is seen at once that f(s) is
then a doubly periodic function, hence an elliptic func-
tion (of the first kind), of real period 20=2# and of
imaginary period 2w’=2i(a-+8). In the general case
where 6540, the function f(s) is not a purely doubly
periodic function but, since one of its periods gives
rise to a multiplying factor, is an elliptic function of
the second kind. It is completely determined, except
for a constant, by its behavior at its poles, in the
neighborhood of which the function becomes infinite
(Hermite’s theorem). In the present analysis, we
shall consider the fundamental periodic rectangle as
formed by the original transformed rectangle and its
reflection in the line I; (fig. 2).

We now investigate the poles of the function

f(6)=2%. We nssume that at infinity [ul=l, in order
that the regions at infinity in the % and ¢ planes be

equally magnified and map into each other (except
for a possible change in direction), and we have

i, -

or noting equation (1.8)!

Fie.. =1 @

[ - Sisjecaie

Pg

//,fz‘g’e-zﬁ

1 _ —S(g)e"is

<

4—/"@8-{6

8 plone

27—
16
N —rrse
-t—— ﬁs ’e 18

Figure 2.—Mustrating the properties of %-f(s) in the strip reglon: f{s) Is the
conjugate complex quantity of f(s).

This relation shows at once that f(s) possesses & singu-
lar point at s=0, and hence has one also at the point
obtained by reflection of 8=0 in l;, viz, s=—278. In
the neighborhood of these points f(s) becomes infinite

in the order of #* as {—« or as 312— as §—0, i. e., has
poles of order two at the origin =0 and at s=—2i8.

1This notation denotes equation (8) of sec. 1.
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The fundamental function having a single pole of
first order (with residue unity) at the origin and satis-
fying the foregoing period requirements is (reference
10, p. 416, and reference 11, p. 369)

L
_e " a(8td)
A= @
where ¢ denotes the sigma function of Weierstrass and
possesses the following period properties
o(u+2w)=—e ntt)g(y) } )
c(U+20")=—e W Eg(y)
The expression (4) for A(8) may also be written as

follows
H (0)H(s+8)

H@)H(s)
where the Jacobi H{(eta) function is defined by the
, equation (cf. references 11 and 12)

Ag)= #)

. 3 5
H(u)=2g"'sin 5 -—2¢*"sin 5~ +2sin 5= — - - (6)

and possesses the period properties
H@u+2w)=—H(u)

Hu+420")=—qg e CH H(u)

where
u

g=e *

The relation existing between the ¢ and H functions is
(reference 11, p. 488)
!
2 H ()

') @

A function such as we are seeking, having a single
pole of the second order at the origin and the required
period properties, may be obtained by taking the
negative derivative of A(s) with regard to s. From
equation (4’) we have

iy GA@®)_ _H'(0) d H(s+3)
AEO=""g"="Hp & HO® ®)

The function f(g) is now determined except for con-
stants a, and @, is given by

o(u)=e

FO=m 0,4 ()t 1208 i (9)
To determine the constants, observe that by means of
equation (3), and by the fact that the expansion of

A(s) sbout the origin begins with the term 5 we have
in the neighborhood of =0

N R

and since from equation (1.8) |{|;« =I%, there re-
0

sults |¢J=2¢. Thus the magnitude of a, is aetermined

and, in general, we may put a;=2ce¢*r where v is an
arbifrary real parameter that determines the stagger
of the segments, and the significance of which will be
seen shortly. It may be observed at this point that
with a;=2ce+* the following relation holds

%_"itﬂ,:en g}‘!t-m.:en

i. e., the regions at infinity in the u and ¢ planes agree in
magnitude but differ by angle v in direction. In
order to determine a; it is sufficient to recall that f(8)
must remain real on /; hence it may be seen that a,
must equeal 2¢e~*. Then finally equation (9) may be
expressed as

(10)

B gold (8)e+- A (s 2iB)e ] (1)
The general function relating the % and s planes is then
by integration - ith regard to s

u(8)=—2c[A(8)e""+ A(s3-2i8)e~ "]tk (12)

where the function A(g) is given by (4) or (4’) and
where k is an arbitrary constant that is independent of
8 but may contain the parameter 5.2

The singular points of transformation (12) are given

by the roots of the equation %=0. It is possible to

draw at once certain conclusions with regard to the
gingular points. There exists a theorem on elliptic
functions (reference 11, p. 366) which states that the
number of zeros of an elliptic function (of the first
or second kind) in a periodic rectangle is equal to the

number of poles. Since f(s)=%1—; has 2 poles of second
order in the periodic rectangle it follows that the
equation %=0 possesses 4 roots in this rectangle. It

is demonstrable without difficulty that 2 of the zeros
are located on the boundary p=«a and the remaining
2 on the boundary u=—pB. These zeros correspond
to the end points of the line segments ¢, and ¢; of the «
plane. It may be stated for reference that on I; the
singular values of A are obtained from the equation

%=0=A'(x—iﬁ)e“+ri’(k+z‘ﬁ)e““’

or since A’'(A—18) and A’(A-}1i8) are conjugate com-
plex quantities, the singular points are given by the

golutions of
Re. A’(A\—1B)e'"=0

where Re. denotes ‘““real part of.” On [;, we employ
the period property (1) of A(s) and obtain for the
equation satisfied by the singular values of

Re. A’ (A -ia)etHID =(

2 The remainder of this section is commentary to this equation. The reader
may, without loss of continnity, proceed to sec. 3, p. 56.
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Developments of A(s) convenient for numerical pur-
poses will be discussed shortly. It may be of value to
consider first several useful special examples of equa-
tion (12).

(a) Parallel segments of zero stagger?® (5=0,
y=0).—It is necessary to observe first the limiting
form of A(s) as 6—»0. From equations (4) or (4’) (or
cf. reference 10, p. 425) we have that

Lim (4@—3) =L - B—r) -2

3=0 ) d(8) o
H
— 2z, (13)
where the various forms are equivalent. The func-

tions o and { are Weierstrass elliptic functions, and
H ond Z, (ete and zeta functions) are the elliptic
functions of Jacobi and Hermite. Then putting for

convenience the arbitrary constant Ic=%c—ic in equa-

tion (12) we obtain

or we may put down the complete equation for refer-
ence as follows. Noting that

2/ (5)=— [r@)——]— ©)+2
where the Weierstrass p funetion is defined by -
p(s)=—-g§ ¢(s), and writing s=\4-ia the equation
determining the singular points of ¢, is
POtia)+p(—ia)+ 2= (15)

The addition theorem (reference 10, p. 140) of the p
function may be written

o’ ) —iF (@)
PO = N T p@F

Here, p(a)=—p(ia) and the bar designates that the
elliptic function p is based on periods 2w and 2w’ con-

p(N+p(e)  (16)

Y
c y}-{ U plone U: plane oG U plane
1 - 5 /N
F S, /
1 —] [A_f T v /, 8 L
] " o3
Q —o——éu'o —w-c—‘—_‘__=h-_ ’ o ? 8
I~ " # N |TW W 7/ I
K/ o // 3 Z};
— [+ _J N / Q
\ ) ® M > G // 1 ?
(W —
() (b} (c) (d)

FIGURE 3.—~Illustrating the case of parallel line segments: (a) ¢ plane, (b) Ui plane (§=0, ¥=0), (¢) Uz plans (=0, y=x/1), (d) U plane (§=0, « arbitrary).

sonD ) u(e)=Ui()=a+iy

=—2[Z,(8)+ Zu(s+2iB)]—ic  (14)
or (as given by Ferrari),

——2q £(6)+4(s-+2if)— 22 |+-const.

Observing that the Z; function has the following period
properties
Z,(8+2w)—2Z;(8)=0
Zy(8+20")—Z,(8)=—1

it follows that for p=e, y=c and for py=—8, y=—
Hence the gap @ between the line segments is 2c.
The case is illustrated in figure 3 (b).

The singular values of X\ are in this case given by

Re. Z)/ (s+1a)=0
Re. Z,/(s—18)=0

The case of parallal line segments has been studled by Ferrari (reference 9).

— 4 —
jugate to the periods of p, i. e., 2“’=?iz?— and 20’ =2iw

(veference 10, p. 32). Making use of (16) and of the
differential equations for the p and p functions:

P "AN*=4p*(\)—gap(N)—gs
P’ (a)*=47* () —gsp(a)+gs

equation (15) becomes
Ap(A)Y*+Bp(N\)+C=0

A=Alnjr—p(e)] _
B=4p(af+8(n/n)5(e)—s
C=4(n[/m)p(a)*+g:p(a)—27,

This equation determines the two singular points
for the upper segment ¢;. In general, thereis only one
positive value of the root »(\), hence the singular
points, A=41,, are symmetrical with respect to the
origin. The negative root does not give real values
for . TFor the lower line segment ¢; it is only neces-
sary to replace a by 8. (CI. reference 10, p. 272:
Given p()\), to find \.)

an

where
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The line segments ¢; and ¢, given by transformation
14) are without “stagger’’ since the midpoint of each
segment is located on the y axis (fig. 3 (b)). In order
to obtain further insight into the general transforma-
tion let us consider the case §=0, y=90°.

(b) Tandem parallel segments (8=0, 7=%>.—In
this case let the arbitrary constant k=—¢ in trans-
formation (12), and noting equation (13), we obtain

Lim u(8)=U,(s) :
=0, 7—5
=—21c[Z,(8)—Z:(s+21B)]—c
=—21¢[¢ () —{(s+2:8)]—¢
It can be shown directly thet the singular values of A
are 0 and =, for we have

dg’=0=p (8)—p(s+2iB)

(18)

(19)

and if
p(u)=p(v) we must have

u=+v}+2mwt+2m’e’ where m and m/

are gny integers. Hence, writing s=A-}1uz we have
for the solutions of (19) in the fundamental periodic
rectangle N\,=0 and A,==. Figure 3(c) shows a
typical correspondence for this case.

(c) Parallel segments of arbifrary stagger.—Let

the arbitrary constant k=<—46£-—ic> cos y—c sin v in
equation (12), and noting relation (13),
T;% u(8)=U(8)=U.(8) cos v+ Ua(s) sin vy
=—2¢(Z,(8)esr+Z,(8)e~tv)—1ce T (20)

The function U(s) is the general relation bringing the
region about any two parallel line segments into a
rectangular region in the s plane. In this transforma-
tion the values of the parameters «, 8, and vy suffice
to fix uniquely the chord ratio- cifcs, the gap/chord
GJes, and the stagger/chord Sfc; of the parallel seg-
ments. The gap between the line segments is 2¢ cos +.
Figure 3(d) illustrates the definitions of the various
quantities. In the general case of parallel segments
of arbitrary stagger, there are given the three ratios
¢1:¢3:@:S and the parameters «, 8, and v are to be
determined. This problem involves the solution of
transcendental relations; in this connection it is con-
venient to draw up charts, e. g., figure 4. This
figure shows & cross plot that presents Gfe;, Sfc; in
terms of «’ and v in the case of equal chords ¢;/c.=1,
i. e, a=p.

The singular points of equation (20) are defined by
the relation

2 0=p@er+pat2ipe+ 2 cos y  (21)

Writing s=A-+1x in (21) we have
cos v[p(Atie)+p(A—ia)+2q/x]
+1 sin y[p(A+ia) —p(A—ia)]=0
Employing the notation of equation (17) and the rela-
tions preceding equation (17), there results

ap* (N +ap? (N +ap? (N +ap(N)+a=0 (22)
Sf%g_:er
400 A &
'\\CET)% -
. %"‘75\\\ ! / 275
N /|
3.00 \ /
. P
5| 250 <
:L" 1.50 \ //
v
Lo %)
5 =l
g i /.25\74 / >//i
/ a\ \\ \/ 7.00
ol LA DB
AR
I 22N
Wit il RN
7 [T
(7] £0 40 60 &80

Angle of gtagger, y ,degrees
PF1GURR 4.—Chart presenting the angle of stagger v and the ratlo of the porlods
=P oanst gapichord G/es, and stagger/ehord Scs in the spactal easo of equal
parallel line segments, (§=0, a=4)

where
a,=A*d?
a;=2AB—4
ay=(B*+4+2A0)d?
a,=2BCd*+-g;
1 cot v

a0=.0’d’+ga and d=§ Z—Wa—)

This equation suffices to determine the values of A
corresponding to the end points of the upper line seg-
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ments ¢;. In the case of the lower segment « is to be
replaced by 8. In general, there are only two positive
solutions for p(\); and it may be observed that the
solutions for both angles of stagger 4+~ are contained
in equation (22). (In sec. 4 approximations for the
singular values of \ are given by simple formulas.)

Jacobi series—In order to obtain further insight
into the general relation (12) and to separate u(s)=
X+4-1Y into its real and imaginary parts it is necessary
to revert to Jacobi expansions. These developments
are especially useful where numerical evaluations are
required.

By reference 10, page 416, we have the following
expansion for the function .A(s):

D)
é “ o8
AO =,

=%(cot 2 4-cot §)+2 >3 35 ¢ sin (ms-nd) (23)

where

e

g=e © =g"'=¢ &tH
The expression for Z,(s) occurring in the case of parallel
segments is

Lim ( A(s)—} cot §>=Z1(s)
S=g

=3 cotg+2 >3 33 ¢ sin me (28)
M= D=y

To separate A(8) into real and imaginary parts, re-
place 8 by A-}-ip and note that

M-ip_ sin A—2 sinh g

cot 2 cosh p—cos \ (24)
Then
AO=MOW+NOp) 5 0t (25)
where ¢
sin A
Mnp )=—2(cosh £—COS )
+g‘,l ::;i @ sin (mA-4-nd) cosh my
N(\p)= sioh 4

" 2(cosh p—cos \)

+j i} ¢ cos (mA-4nd) sinh my

m=] n=]

4 Tho value of g= ¢~ (=+/ may always be kept less than e—==0.0432 by resorting when
nocessary, e. g., a-+S small, to transformations that interchange the real and imagi-
nary periods of the elliptic functions (reference 10, p. 266). Thus the expressions
can always be made to converge very rapldly. Indeed, there exist several other
expansions for A(s) which though less simple in form are more rapidly convergent
than the formula given here (reference 10, p. 422).

136092—37—5

Let us put the arbitrary constant % equal to
(2¢ ,cot g—ic)cos'y—osin'y m equation (12) and sepa-
rate u(s) as follows

u(@8)=X-+iY

=1u,(8) cos y+ua(s) sin ¥ (26)
where .
Uy (8) =z
— —20[A(8)+A(s-+2iB)]+2¢ cot g—ic' @7)
and

us(8)=z"+y’
=—2ic[A(8)—A(s}+2i8)]—¢c (28)
It is evident that u,(s) and us(s) are generalizations
of U,(s) and U,(s), given by equations (14) and (18)
for the cases (=0, v=0) and (6=0, y=1/2), respec-
tively. )
Employing relation (25), equation (27) giving u,(s)
may be separated into
T=—2c[M(\, p)+MO, p+28)] } (274)
y=—2c[N(\, )+ N, p+28)]—¢
It is observed that for u=—8, the coordinates become
$p="—4:CM()\, B)} (27b)
Ysg=—¢ 4
Equation (27a) is most useful in the neighborhood of
p=—PB. For values of p near «, relation (27) is first
rewritten by making use of the period property
A(s+20")=A(s)e%, and we have
z=—2¢[M(N\, &)+ M(\, u—2a) cos
+N(\, u1—2a) sin §]+csin §
y=—2¢c[N(\, p)+N(A, p—20a) cos &
—M(\, p1—2a) 8in 8]4-ccos 8
For py=q, equation (27¢) becomes
Za=—2c[M(, @) (1+cos 8)—N(}, ) sin ]
+csin §
Ya=—2¢[N()\, @) (1—cos 8)—M(}, ) sin 8]
+ccosd
It may be remarked that equations (27), which hold

(27¢)

(27d)

_also for the special case =0, show immediately that

in this case ys=—c¢ and y.=c¢, or that the gap of the
parallel segments is 2¢. In the general case (5520,
y=0) it is clear from (27d) that the point (z., ¥.)
=(0, c) lies on ¢;. + The ““gap’ as measured along the
y axis (. e., from z3=0 to z,=0) is therefore again 2c.
The effect of decalage may be considered to a first
order to be a rotation of the segment ¢; for the case

(6=0, y=0) by the angle §/2 about the point (0, ¢).
Employing relation (25), equation (28) giving u.(s)
may be separated into .
$,=—20[—N()\,[.L)+N()\,[1+26)]—G} (280.)

=_26[M()‘1#)_M()\:F"+2ﬁ)]
It is observed that for u=—p the coordinates become
xf’: =—4cN(\,B) ——c} (28b>
Yy’ =0
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In the neighborhood of p=e«, it may be preferable to
express equation (28a) as follows
' =—2¢c[—-NQ\,w)+N\,u—2a) cos
— M\, p—2¢) sin 8]+}-c cos &

Y =—2c[M(\p)— M\ p—2c) cos § (28¢)
—NQ\,u—2«) sin 8]—¢ sin §
For p=c« the coordinates are seen to be
T’ =2¢[N(\, @) (14-cos §)
+M(\ ) sin 8]--c cos § (28d)

Yo! =—2¢[M (N, ) (1—co0s §)
+N(Q\,) sin §]—c sin §

For =0 it is clear from (28b) and (28d) that
Yo' =795’ =0. In general, for §>%0 it can be seen that
the coordinates (z./, ¥.')=(—c,0) satisfy equation
(28d), hence this point lies on ¢;.

The general equation (12) or (26) may now be
separated into

u4(8)=X41Y 29)

where

X=x cos y+z' sin v

Y=y cos y+y’ sin v
In particular, it is clear from the foregoing that the
lower segment ¢; is situated at Ys=—2¢ cos v and that
the point (X, Y.)=(—c¢ sin v, ¢ cos ) Lies on the
segment ¢;. - .

If there are given any two line segments in position,
the three ratios c;:ce:G:S are known (in addition
5 is known), and the quantities «, 8, and y are to be
determined. Equation (29) is transcendental and a
direct solution for a given case is not available;
however, an indirect procedure of building up charts
similar to figure 4 (for which §=0) for different values
of 5 may beresorted to. 'The case of parallel segments,
as well as the degenerate monoplane case (cf. sec.
4), will prove helpful in this procedure.

For later reference, the derivative expression (gl—;

may be put down. We have

%=%‘ cos 7+%";’ gin v (30)
where
_1 d'lL;

5 ge— 2 (&) +A4'(s+26)

=P\,u)+1QM\,n)
224 (5)— A 5+ 2iP)]
=P (\p)+iQ" (\n)
In order to determine P, @, P/, and @’, the following
development is noted
A'(s)=m§ nZ:)mq"‘“ cos (ms+ns)
=M’',p)+iN"(\p)

(1)

where
, __1—cos Acosh u
M (p )_2(cosh #—CO8 A)
— i Zn)mg’“" cos (mA-+né) cosh myu
7 _ —sin A sinh Ji3
N (x’#)_z(cosh #—CO8 \)
— i;_ imq’"‘“ sin (mA4né8) sinh mu
Hence,

P=M’(\p)+M' (N p+28)
Q=N"(\w)+N'(\u+28)
P'=—N'(\g)+N'(\u+28)
Q' =M’(\p)—M'(\,u+28)
And finally

B 261P cos y+P" sin y4i(@ cos v+’ sin)

(32)

The equations of this section may be simplified in

the noteworthy special case in which a=pg. The

constant 28 is in this case equal to half the imaginary

period, i. e., 2i8=w’ and, in particular, the line seg-

ments ¢; and ¢, are equal. By reference 10, page 422,
we have

. L
A(s+w')=z7——:(§)tg)e e 2

=e_‘;(% ese g—l-mi gg(‘h—l)m sin [ms+(n—1/2) 5])
This expression may therefore replace .A(s+2i8) in
equations (26), (27), and (28). Similerly in equation
(30) A’(s+2i8) may be replaced by A’(s-+«’) where

el

i mg® 1" cos [ms—+ (n—1/2) §]

mognm=y

Ao )=—e ™

3. TRANSFORMATION OF A NEARLY CIRCULAR RING
REGION IN THE w PLANE INTO A TRULY CIRCULAR
RING REGION IN THE z PLANE
In the foregoing sections, there have been obtained

the equations transforming the region external to two

circles (in the ¢ plane); or the annular region between
two concentric circles (in the w plane); or also a rec-
tangular region (in the & plane); into the region
external to any two nonintersecting line segments (in
the u plane). Tt may now be imagined, for definite-
ness, that two airfoil profiles are generated about the

two line segments as chords in the % plane (fig. 5 (a)).

In the plane of the rectangle, the two profiles will

correspond to curves of small amplitude extending
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from A=—x to A=n near the boundary lines p=a
and p=—pB, respectively. In the ring region, the
profiles will correspond to two nearly circular contours
forming an annular region (fig. 5 (c)). It is intended
to show how this annular region may be transformed
into a concentric circuler ring region (fig. 5 (e)).

At present it is assumed that the nearly circular
ring region in the w plane corresponding to a given
biplane cellule in the % plane is known. It is observed
that this knowledge implies that equation (2.12) may
be inverted and the variables A, x solved for in terms
of z and y. How this task may be done is taken up
in section 4. It is recalled here that the variable A
corresponds to —@ (equation (1.6)) and that the

s plone

where the radii are respectively,
R1=ce"1, R2=CG°'I, 0'1>O, 0‘2<0

(At times it will be found convenient to denote &, by
o' and o; by —8’).

Let the function that transforms the w plane con-
formally into the z plane be written as

w=2ze*® 5)

where z=ce"t%*=Re* and where h(z) represents a’
Laurent series with complex coefficients:

h(e)=ay+ 3 (0" anz ™) (6)
where B;=|z| =R,, or with z=Re*

h(2)=f(B,p)+19(R,e) (6")

4 Y Y
Y Fy
C .
u plane L,
2 x e 7
L
AR =%
fe) ' )

Fiaure 5,—Mapping of: (a) two contours A¢ and Bs of & biplane arrangement into (b) two curved lines I; and L fn the s plane, (¢) two nearly cirealar contours
By and B of an annular region In the w plans, (d) two nearly circular contours K; and Kz In the ¢ plane, (¢) two true circles ¢y and Ci of the concentrio ring region

in the z plane,

neighborhood of the point w=¢, which corresponds to
the region at infinity in the ¢ or % planes, must be an
internal point of the annular region.

The annular region in the w plane then containg
two boundeary contours, an outer contour B; and an
inner contour B;. Let the contour B, be defined by

w=ceﬂl(ﬂ)+w (1)
and the contour B; by
W= e+ H+10 (2)

where the range of # may be chosen as 0=<=2x.

Consider now a z plane (fig. 5 (¢)) containing two
concentric circles about the origin, an outer circle C,
that corresponds to B; and an inner circle ¢, that
corresponds to B,. The circle ; may be defined by

z=ceritte 3
and the circle C; by
z=ce’itte 4

It is seen that on O,
log Z=h(z)=h(B1,p)

=f(B1,0)+19(B1,0) =p1—0a1+i(0— o)
or, in short,

hl((o) =f1(¢) ‘I"igl(so) =m—oa1+1(0—e); (7)

-where (§—¢), means that the quantity §—¢ is evalu-

ated around C;. On O, similarly
hz(?’)=f2(¢)+iga(¢)=#z—62+’i(0—¢)2 8)
Let the complex coefficients in equation (6) be
expressed as :
ax=A,+1B, J
a_=A_,+1B_
Then, from equations (6) and (7), it is found that
file)=Aot 2A(AR ARy cos g
_(B.Rln_B_;R]_—n) Sin 'an] (10)
gl(¢)=Bo+21[(BnR1"+B—n 1) cos ne
+(4.B"—A4,By™") sin ne] (11)

9)
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Similarly

fz(¢)=Ao+2:[(AaRz"+A—uRz-") cos ny
—(B.Rgn—B_g 2—:1) sin 'n:p] (12)

g2(¢>=Bo+z‘j[(B,,Rf+B_. ™) cos g
+ (4R~ A_,R;™™) sin neg] (13)

From equation (10),
O 3\
AR+ AR == [ (6) cos nedo
2r
— BB+ BBy =bi,—2 [ (o) sin ned

y (14)
and
1 (>, 1 (2
A0=al.0=§?‘r‘£ f1(¢)d¢=2—ﬂ_ o mdo—oy
Similarly from equation (12),
2r
AR AR == [ 7ie) 008 nedo |
;1 o _l 2r .
BB+ BB b [ o) simnede |1

and

1 2 T 1 e
Ao=aa.o=2—wj; fz(ﬁp)d?’:ﬁrj; pado—os

The equality @;,0=as,0=4, is a condition of uni-
formity that is necessary since A(z) is a regular analytic
function in the ring region. There is, in addition, an
arbitrary element in equations (10) to (13) (which
may be chosen in a number of ways) viz, there is at
our disposal the choice of the point in the z plane that
shall correspond to, say w=c. This choice, which
will be introduced at a later point (p. 14), is z=¢
when w=c¢, and will fix the constants A, and B, in
terms of B, and R; and the remaining coefficients.

From the first parts of equations (14) and (15),

REPORT NO. 542 NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

there is obtained on solving for A,, A, By, and B_,
al,nRi —as B B ='—br.uRz'""+b2.nR1"“

LA N
A_ﬂ_—al,n 2 a'i,nnl, dB_,= —O1n nz" uﬂl"
- Gr-Gy ) (%)

17

(16)

where

r=o1—a(=a'+8")
Substituting by means of equation (16) in equation
(11), it is seen that
bl ﬂdn +b2 ai'—bl n€ ur+b2u

gi(p)= Bo-l-E g T g —gmar  JC0s A
-l-Z al - __‘,7;,’ .+a1 al f;,:];’ * Jsin ne
g1(p)= Bo+2[ —by. 6ﬂr+ﬁ~n:>

+bz n(———e,,, 2 e.,,,)]cos ne

+E|:a1 "(eﬂf-l-e::f) .(e,,,Tze_T,>:|sin ')

g1() =Bo-i-$(—b,,,l coth n74b;,4 csch n7) cos ne

or also

+$(am coth nr—ay, csch nr) sin ne  (17)

Similarly, by substitution of equation (16) in equation
(13),

gg(§0)=Bo+zc:3(—b1m cach n74-by » coth n7) cos ne

-I-f:(al,, csch nr—ay, coth n7) sin np  (18)

Denoting the variable in equa.mon (17) by ¢’ instead of ¢ and substituting by means of equations (14) and

(15), it appears that

= 2x
91(¢’)=Bo+;1rz ﬁ J1(0) (—sin ny cos ¢’ }-cos ne sin ne’) coth nrde
1

= 2x
+%_2J; f2(¢)(sin ne cos ny’ —cos ne sin ne’) csch nrde
1

or

gl(so')=Bo+§i[ [ F1te) sin n(o—ef) csch nrdo— [ “Fi(e) sin nlo—s') coths nrd |
1

In a similar menner,

gs(¢')=Bo+,1—r2 [ﬁhfa(qo) sin n(p—¢’) coth nrdp— J; 2rﬂ(<p) gin n(p—¢’) cach n‘rdgo:l

(19)

(20)
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The two series expressions
a) ':2 sin n(p—¢') coth nr
b) 3 sin n(p—¢/) ésch nr
that occur in equations (19) and (20) may be evaluated

in terms of elliptic functions. Consider the expansion
for ¢(u) (reference 10, p. 403)

H'(w)
s Tz, =5 &
=2—:; cot;z 121‘- lgqu, in 27%

In order not to confuse the penods occurring here with
those of the preceding section, the real period is
denoted by 2w;=27, and the imaginary period by
20)2=2’i1',

@ —oar
Zl(u)— cot— +2 —ewsmnu

——E gin nu—l—Z(l_l_e_w 1) sin nu

—2 coth nr sin nu (21)

Consider the expamsion for {(u-tw;) (reference 10,
p. 426) ¢

n(u) 0’ (u)
(’lL'—I—wg) - _ —Z('IL)— [2) (’lL)
21r q gin 77U
1I—¢= "%
TFor w,== this expression becomes
N 2e%
Z(’u)=2m sin nu
1
=§‘_, csch nr sin nu (22)
1

Then replacing # by ¢—¢’, equations (19) and (20)
become
§ For reference, noto the definition of the © function (¢f. references 11 and 12)
O(u)=1~2g cos %‘+2¢4 cos 2%"'—2;7' cos 3%"'+ v

The H function Is deflned In equation (2.6) of the preceding section. Some writers
on elliptic functlons uss Go'and 1 to denote the © and H functions.

1 [
010V =Bt [ TV Zle—o

1 2x
=), F1@)Zi(e—o")de (23)
1 2x
92 =Bt [ 1) Zulo—o i
-1 ohfl(so)z(so—so')dso ea)

Since Z(u)= ee((u)) and Z,(u)= 7—, there is obtained

also by integration- by parts:
1 2x
01 =Bo—2 [ (0) log 0 (o)

1 (2r
[ H @ g Be—ede  @3)
1 2x
9:(¢)=Bo—2 [ "1+ (o) log Fi(p—/)do
+H [ @0 00—oNds @)

where the logarithm operates only on the absolute
value of the quantities 6 (p—¢’) and H(p—¢’).

In a manner similar to the foregoing procedure it is
possible to solve for the coefficients in equations (11)
and (13), substitute in equations (10) and (12), and
obtain as the reciprocal relations to (23) and (24) the
following:

e =4o=2 [ 0020~

[0zt @)
1 2x
fale)=Ao—2 [ "0V Zulo— o)
1
+[Tn@ze—etde  eo)

Equations (23) and (24), which essentially express
& pair of boundary-value relations for a concentric
ring region, permit the obtaining of the imaginary
parts of a complex function k(z) along the boundary
circles of a ring region from a knowledge of the real
parts along the boundaries. These equations are
fundemental in, & potential-theory study of ring regions;
they have been developed in & different manner and
for another purpose by Henri Villat in 1912 (reference
13, p. 147). It will be shown shortly that equations
(23) and (24), when generalized and regarded as
integral equations instead of being considered as
definite integrals, make it possible to obtain the com-
plete correspondence whmh we are seeking for doubly
connected regions.
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The function giving the value of k(2) at any point inferior to the ring region may also be expressed in terms

of the real parts of h(z) along the boundaries C; and Cs.

1 Jp-(" ()—lﬂpd‘a_R_ufhf()g‘i"fd]
=9~ mnh nr 2 0f1¢3 1 0 2\¢ 4

a‘u=-An+7:Bn

From equation (16),

4w At iBorm g | B [ St B [ Sioleneds |

Then equation (6)
h(z)=ao+$ (@:2"t+a_nz™)
becomes

h=a—2 [ fio) Mot [ Filo)Nde  @7)

where

- 2 Rg"z_"e""’—Rg_"z“e'“?
M‘? 2 sinh nr

& Rz e —R"gre” e
N=23"""%smhnr

The quantities M and N may be readily expressed in
terms of elliptic functions. Let

ettt = mzmpte
Then by equation (22),

1sin nw, _ ©'(va) .
M_E sinhnr 20 (v3) =iZ(2)
SLmﬂ&rly let
eM=R 2 mgtne

Then

6 (v)) .
N= 5 ) =1Z(p;)

Then finally

w=ao—L [" 1 Z0de+2 [ Ta)Z00de

where

(28)

ne=ilog g+
. 2
=1 log o +o

or writing

z=ce-tte’

vy=p—¢ +i(c—02)

n=p—¢’'+i(c—a1)

Determination of the constants A, and B,—It will
be recalled that the neighborhood of the point w=c
corresponds to the region at infinity in the ¢ and u
planes. In order to make the correspondence of the
w and z planes unique the following condition is put
down. Let z=c¢ when w=c, hence causing the region
about z=c¢ to correspond also to the region at infinity
in the ¢ and « planes. There is, however, an essential

fact to be noted, viz, %ﬂ evaluated for z=c is, in gen-

eral, different from unity, hence generally a magnifica-
tion and rotation of the regions near w=c and z=¢
exists in the two planes.

The conditions to be studied are

w=c (29)
%’=re‘5, evaluated for z=c¢ (209
From equation (5)
w=2ze"®
there is obtained
dw_ (1 +z%l) (30)
The éondition (29) then corresponds to
[~ (2)]:==0 (31)

And, in view of the preceding relations, equation (29)
corresponds to

|: dh(z) =ret—1=p-+ig (311
where it is noted that r and £ sre given in terms of
p and ¢ as follows:

r=Q1+p)+¢
f=tan 7

By equations (6) and (9), it is found that equation (31)
separates into

Ao+§<;(A,cﬂ+A.c-ﬂ)=o (32)
Bo+$(B.c"+ B_ic™)=0 (33)
Also equation (31”) becomes -
S (An* — A ) =p (34)
1
z‘l’;n(B,cﬂ—B_,,c—ﬂ)=g (35)

These equations may also be expressed in other
forms. For example, from equation (28), since z=c
corresponds to c=0, ¢’=0, we have that

. vl
hey=0=AotiBo—2 [ “File)Ztoa)de

i (o
+2 [ 10 Zat0de
where
0g=g0—"i0‘3,
and
v, =p—10,
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Employing equation (22), this separates into

1\\sinh 2
Ag—= Tﬂﬁfﬁ J1(o) cos nede
+; LR (") cos nedo=0 (32)

10\ cosh gy (26, . .
B2 ) Saine [t sin modo

+ Ecoshnalf F2(0) sin npde=0 (337)

In these equations f; and f; may each be altered by the
addition of a constant without altering the values of
the integrals. Hence, if fi(¢)—4,, fi(p)—A, are
known (i. e., only the variational parts of f; and f; are
known) and if there are also given or known the quan-
tities B,=ce”, Ry=cen, equations (32°) and (33’) de-
termine directly the constants A, and B, so that con-
dition (31) is satisfied.

Since u; and pj differ from f; and f; by constants
(cf. equations (7) and (8)) they may replace f; and f; in
equations (32’) and (33’). Also, by equations (14)
and (15) it is recalled that

A= | pdo— _.i " edo—
0—21!_0#1 01—27‘_0# ©— 02

2x
or that r=¢rl—u,=§]‘;ﬁ (u1—u2) dp. Hence, if there

are given the functions y, and p, (therefore = is known),
equation (32’) determines the individual quentities
oy and o3 (. e., the radii B, and R;). Equation (33")
then again defines the value of the constant B,.

By the use of equations (15) and (16), the conditions
(34) and (35) may also be written in other forms.
Thus

AN h 2
p==;2%17n:’ﬁ Fi(p) cos nedy

1 n cosh ne,

2x
N R (i) cos nede (3¢))
1

n sinh ne,
“sinh nr

1\ sinh na, (' .
—LN R [ fu(e) simnpde (35)

™
1

g1 ) IR [ 71(6) sin nede

Further study of equations (23) and (24).—It has
already been mentioned that there are two points of
view from which the simultaneous equations (23) and
(24) may be studied. In one, the equations are re-

garded as definite integral evaluations and the func-
tions f;(p) and fi(¢) are known as functions of the
variable ¢. In the other, the equations are regarded
as integral equations and the functions are known in
terms of 4, not ¢. In the next few paragraphs the
definite-integral viewpoint will first be employed and
it will be shown how it may be used to develop biplane
arrangements in an artificial or indirect manner. The
results obtained by this method will also be of some
Interest and value when the more direct integral-
equation point of view is investigated in the subsequent
section.

Families of blplane arrangements.—When f;(¢) and
Jf2(p) are known functions, the evaluation of equations
(23) and (24) determine the ‘‘conjugate’’ functions
g1(¢) and gs(¢). It may be observed that the Fourier
series expansions of fi(¢) and ¢;(¢) and of fi(p) and
g:(p) are related by the peculiar interchange of co-
efficients as seen in equations (10) to (13). The
existence of the iIntegrals in equations (23) and (24)
requires only that f;(¢) and fi:(¢) be piecewise con-
tinuous and differentiable, and have no poles of order
equal to or greater than one. In this paper, however,
the only interest is in continuous, single-valued func-
tions f, and f;, of period 2x, and satisfying the condi-
tions of uniformity (cf. paragraph following equation
(15)), such functions as may always be associated with
the conformal transformation of doubly connected
regions bounded by continuous closed contours for a
proper choice of coordinates.®

‘When the functions ¢,(¢) and g:(p) are known, the
correspondence of 6 and ¢ is immediately known along
the boundary contours since g(¢)=0—¢. Also, the
functions f1(p) and f;(¢) together with the constants
o, and ¢y determine 7 the functions u;(p) and us(e).
The quantities p; and pe expressed as functions of
6(=—2X) then permit the defining of two contours in
the « plane, the external region of which is in one-to-one
correspondence with the ring region. Some specific
examples will shortly be given. With an insight
gained by experience, the functions p;(¢) and ps(e)
may be so chosen that certain desired classes of prac-
tical biplane arrangements may be obtained. It may
be remarked here that once there is obtained a definite
biplane arrangement by means of this process, the
problem may immediately be considered reversed and
thus ingight is obtained into the solution of the asso-
ciated integral equetion. This notion will be later
examined; in this section, some illustrations of the
afore-mentioned process are briefly presen'ted.

¢ There Is an additional condition on gi(¢) or g3(») necessary in order that the
contours shall be free of double points (cf. reference 1, p. 10), viz,

—_ <dm<m _15‘;%:5,
7 It Is understood that the mlnor equ.at!on (31) is to be satisfled.
4
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By reference to the Fourier series developments for
Ji{e) and fa(e), equations (10) and (12), it may be
observed that a particularly simple example is the
following:

filp)=m(p)—o1=A4,—0.1 sin ¢
=Ao— (BIRI—B._lRl_l) Sin. @

Falo)=ps(p)—aga=A,}0.1sin ¢
=Ay— (BR:—B_1R;™) sin ¢

(36a)

(36b)

Also let o-1=7—;-—-0.1=1.4708, and let oy=—1.4708.
(Hence r=0,—03=2(1.4708) and 2ws=2t7=>5.88321.)

or finally,
p1(¢)=1.4708—0.1 sin p=—ps(p)
g1(p)=—0.04851-+0.11114 cos p=ga(p)

It is now possible to define the variable 6=¢-+g(e)
along each contour:

fi=—M=0p+g1(p)
O3=—n3=p+g:(p)

In addition to the choice of f; and f;, the line seg-
ments, or chords, and their relative positions (deter-

o x _(_\ 0| o~
I (7= 909
——— o)
N
(7 =09
(&)
T
o _ [2] l —_— _
|
— _—
——
(r=15%) (r = 309
() (d)

F1oURE 6.—Biplane arrangements defined by special cholce of f; and f; and other paramsters. (See equations (36a) and (36b).)

By equations (11) and (13), there may be written for
91(p) and g:(p)

91(0)=(0—¢)1=Bo+ (BB +B_1E™) cos ¢
92(¢)=(0—¢)2=Bo+ (B:1Rs+B_1Bs") cos ¢
The conditions on A, and By, equations (32) and (33),
give A=0; B1=B_1=O—é1 csch% (cf. equation (16)),
hence By=—2B,. (Also, note that for this example,
equations (34) and (35) give p=¢=0, i. e, [%221_0
Then,
gi{e)=—0.1 csch%—l-o.l coth%cos o=g:(p)

=re%=1).

mined by «, 8, v, and &) about which the biplane con-
tours will be generated may be chosen. (See fig. 5.)

Choose =0 and a=6=% (hence 2w’'=2xi). The rec-

tangular Cartesian coordinates of the biplane contours
are now given by equation (2.29), Figure 6 shows the
arrangements obtained in this numerical case for a

‘number of values of the angle of stagger v.

In the elementary example just described the profiles
for zero stagger are mirror images (fig. 6 (a)). A simple
numerical case for which this is not true is given by

fi(e)=u1(p)—o1=A,—0.1 sin (p+4-30°) (37a)
fa(@)=n2(p)—os=A,+0.1 sin (p—30°) (37b)



POTENTIAL FLOW ABOUT ARBITRARY BIPLANE WING SECTIONS 63

Here, also, choose a=ﬁ=%; 1=—09=1.4708. Then

g1(¢)= (60— ¢)1=DB,+0.09625 cos ¢—0.0450 sin ¢
ga(p)=(0—¢)3=DB,-}+0.09625 cos ¢+0.0450 sin ¢

The constants A, and B, determined by equations (32)
and (33) are

Ay=0.0216, Bo=—0.0420

ZmC

(Again, in this example I:%D] =rel=1:)" -

Forming 6, and 6;, the rectangular coordinates of the
contours are obtained as was shown in the preceding

y

Indeed, if the process is considered in_ the light of &
boundary-value problem of the concentric ring region,
it is seen that it is sufficiently general to yield any
biplane arrangement (more generally, any doubly
connected region).

Equations (23) and (24) as integral equations.—It
is desirable at this point to introduce the following
notation. Frequent use will be made of subscripts.
The first subscript will usually be 1 or 2 and will indi-
cate that the designated quantity is to be evaluated at

‘the boundary O, or-C;, respectively (or.also-By-and-Bs,

respectively). A second subscript will sometimes be
employed to denote the variable in terms of which the
quantity is expressed. Thus p; ¢ represents the quan-

—_ 1 > ee— L
| — —
| |
o] - — ° _ _0|
| |
| | L

s ——
| =09 (7 ==15 (7 =-309
(&) (b) (c)
| |

e B I
— N -
[ [2] o -
_(——L"_—\ - —
) B e
(r =159 (r =309 (475:-065
@ (e} {f)

F1QURE 7.-—Biplane arrangements defined by special cholee of f; and /2 and other parameters. (8es equations (37a) and (37b).)

example. Figure 7 shows some arrangements for
various values of the angle of stagger v. Figure 7 (f)
shows the arrangement obtained (for v=0, cf. fig.
7 (a)) when an angle of decalage §/2=—3° is further
introduced in this numerical example.

In this manner, by employing appropriate values for
f1(e) and fa(e) (or gi(») and gi(p)) and for the other
parameters involved, it is possible readily to develop
arrangements of @ great variety of contour shapes,
gap/chord values, chord ratios, stagger, and decalage.

136602—37——8

tity u evaluated around C, (or B,) expressed as a func-
tion of 9; also, us . denotes the quantity p evaluated
on C; expressed as a function of ¢.

It is recalled that by equations (7) and (8)

f1,¢=#1,¢—0'1
f:,.p‘-:#a,p—o'a

or f; and u;, and f; and p; differ by constants. Then
in the integrands of equations (23) and (24) the func-
tions f; and f, may be replaced by p; and g, since the
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additive constants do not contribute to the integrals.
If a definite, biplane arrangement is preassigned or,
what is essentially the same, if there is given a definite
nearly circular annular region (in & w plane; w=ce**¥),
it is the functions u;, ¢ and ps,e that may be considered
directly defined or known.? Thus, from an initial
knowledge of u,,s and p3, ¢ 2and with the aid of equations
(23) and (24), it is desired to obtain a knowledge of
the functions p;, , and us,,. From this point of view
the expressions (23) and (24) then represent 2 pair of
simultaneous integral equations, whose process of
solution is more intricate than that involved in the
process of evaluating the definite integrals. The
problem may be restated more precisely:

@iven two functions p,,¢ and p. e that define two
continuous contours of an annular region with respect
to an origin contained by both contours. Then two
pairs of functions pu,,, and gi,,, and g, , and g, , are
to be obtained such that they are interrelated in the
manner shown by the interchange of coefficients in
the Fourier expansions, equations (10) to (13), which
also satisfy certain local specified conditions at z=c
(equation (31)), and for which the relations g,= (6—¢),
g2=(0— )3, which permit an interchange of the argu-
ments 6 and ¢ on each boundary, are consisteni with
the given functions p;,s and pa,»; that is to say, when
1, i8 expressed as a function of § by means of the
function g, there results the original function p;,e;
in symbols

B, o=H1,0
when §=¢-+g1,, 0r p=0—g1.6
and similarly
B2 o= H2,0

when 6=p-}g2,, OF @=0—gs.

The process employed in this paper to obtain the
desired solution of the simultaneous integral equations
is one of successive approximations or iteration.
The degree of convergence of most methods of suc-
cessive approximations usually depends on how good
the initial approximation is. In this regard it is
rather fortunate that the contours of practically any
biplane arrangement transform, under the transfor-
mations already developed (with proper choice of
coordinates), into mnearly circular contours in the w
plane. The nearness of these boundary contours to
circular contours is very significant and enables the
initial approximations to be so chosen that the process
converges ordinarily with great rapidity, one step in
the process being sufficient for most practical purposes.

Outline of the method of successive approxima-
tions.—The various steps in the process of successive
approximations will be written down schematically.
(Allowing for a difference of notation the process is
essentially similar to that employed in reference 1.)

3 The proocass of forming oy andpL,. assuming as known only the rectangular
coordinates of the biplane contours, is outlined in section 4, p. 66.

An extension in the use of subsequent notation must
first be noted. The symbol f,s represents, as men-
tioned previously, the function f evaluated on C; and
expressed as a function of 8. The symbol f.;,¢ shall
now be employed to denote the value of f; as given
in the kth step in the process of successive approxi-
mations, expressed as a function of §. Thus the
symbol gz 1,4, ; denotes the value of g, given by the
fourth step in the process, expressed as a function of
@, as given by the third step in the process.

We start with the two functions u;,¢ and ps,e that
define the contours B; and B; completely. Employ-
ing 9 instead of ¢ in the integrals,® equations (32")
define the constants ¢, and cs; and equation (33’)
determines the constant By;. The simultaneous
equations (23) and (24) then determine completely
the functions g, ;1.¢ and g 1,s s follows:

e11=0—g1.1,6 }
p2.1=0—gz2.1,6

The values p1, 4, , a0d p32, ¢, May now be defined

and these functions may be considered as known.
Employing ¢;.; and ¢s.; as variables instead of ¢, equa-
tions (32,) and (33,) determine 01,2y 039.2) and Bo.g.
Equations (23) and (24) determine then the functions
1.9 v, 80d g3.2,¢ 55, Which may be expressed as func-
tions of 6 in view of equation (382). The variables
o1.3 and ¢g ; are now given by

e1.2=0—4g1.3, 9}

¢3.2=0—0ga2.3, o (38D)
The functions u, 4, , 80d pg, o , 2re now determined
and the process may be continued as outlined for
E1, oy 80d g, o . It is noteworthy that this process
converges, in practice, with extreme rapidity, that is
to say, the functions g1,y , and pa, e, , approach iden-
tity with 11,0 4, 80d #2,6y,,, for small values of £.
Experience has shown (cf. also reference 1) that in
ordinary cases one, or at most two, steps in the process
are sufficient for great accuracy. It must be noted,
however, that a completely rigorous discussion of the
convergence process is lacking. .

In order to illustrate the method, consider the
biplane arrangements of figure 7 defined by the func-
tions in equations (37a) and (37b). Forgetting for
the moment that the various functions are known,
assume only p;,s and uz,e to be given and attempt to
obtain g; , and ps, . Figure 8 shows the various
functions described. It is seen that the set of curves
J1,011. 93.921. Hlie1g. and B2,pq91 (obt:uned by a 20-
point numerical process similar to that sketched in

(38a)

% Denoting the initial approximation by a zero subscript, observe that the inftial
approximation employed here I8 1, 4=6—g1 s and 1,0=28—g1,6 where gr.o=gs,0=0. Moro
generally, the initial transformation may be better defined where g1, and g1,0 are
arbitrary functions, so chosen that they are better approximations to the final
solutions gy and ¢3. Then employing ¢1.0 and 2,6 bs varlables instead of 8 the funo-
tonS g1y, A0d 1.1, ¢y May be defined from which g1 and gz are determined
and the process continued as outlined. (Of. reference 1, p. 13.)
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the appendix of reference 1) are completely coincident
with the known solutions gi4, g2,e; p1,6, 80d p3,. A
further application of the process can cause no fur-
ther noticeable change.
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Fi10URE 8.—Illustrating the process of successive approximations.

For future reference, the derivative expression %Zw

evaluated at the boundary circles will be required.
From equation (30)

dw w(l + dh(z)

On 01
}L(Z) =fl,w+7:gl.p
Then
dw dgl @ dfl
#lo 2o [(+%)-] oo
Observing thet de=d(0—g) this may also be expressed
(8
dw =l_1£l “do (39)
H:’Z— 01 z 01 1 351.0
T de

For the boundary (., the subscript 1 is replaced by 2.

4. GENERAL MONOPLANE WING SECTION THEORY—
A DEGENERATE CASE OF THE BIPLANE ANALYSIS

It may be of some inferest to discuss in this section
briefly the case of the single airfoil section considered
as a special case of the biplane analysis. A biplane
arrangement in & two-dimensional field of flow corre-
sponds mathematically to a doubly connected region.
The degenerate case in which one of the biplane con-

tours reduces to a (regular) point leads to the mono-
plane-wing profile the external region of which is
simply connected.® It should therefore be possible
to obtain the complete theory of monoplane wing
sections in potential flow as limiting values of the
formulas already developed for biplane wing sections,
as will be outlined in the present section. Conversely,
the monoplane case is of further significance-in that it
permits a more complete understanding of the biplane
analysis and, too, considerably simplifies the practical
evaluations. The numerical process employed in
the monoplane case, it will appedr, needs to be modified
in a relatively minor way to yield the results for or-
dinary biplane combinstions. Indeed, according to
a method outlined by Koebe (reference 2), it is known
that even the more general problem of transforming a
multiply connected region (multiplane problem) into
a region bounded by circles may be resolved by a
process of successive approximations employing only
the separate cases for the simply connected regions.
The details of this problem remain for a future investi-
gation;itis mentioned here merely as a further possible
application of the degenerate case.

It may first be observed that as one of the circles
in the ¢ plane reduces to a point the value of « or 8
(according as the upper or lower circle degenerates)
becomes infinite. Hence in the degenerate case, the
elliptic functions introduced in the analysis become
circular functions having a real period 20=2= and an
imaginary period 2e’, which is infinite. From equa-
tion (2.23) it is clear that «'=ie corresponds to g=0
and that

Lim A(s)—
g=0

§d,1 8
cot §+§ cot§ 1)

Let p=e, then employing this equation and relation

(1.8) 1t is found that equation (2.12) becomes
2
Lim u(s) e®3= U1=T1+‘7‘T (2)
g=0 !

where the origin in the U, plane is referred to the mid-
point of the line segment and where

Ti=er¥3®({—ic coth «)
a=c¢ csch

It is seen that the T plane corresponds simply to the
t plane translated to & new origin (0, in fig. 1) and

rotated by an angle 'y’='y+%~ Equation (2) is noth-

ing more than the well-known transformation leading
to Joukowsky airfoils. The line segment in this case
(=) is8 equal to twice the diameter of the circle in
the T, plane, i. e., c;=4a.

10 Strictly speaking, the point at infinity represents another boundary and the flow
reglons are respectively, triply connected and doubly connected. ‘This fact corre-
sponds to the circumstance that in the flow formula for the biplane cass thers may
be two arbitrary circulations specifisd, and in the monoplane flow formuls, one.
The flow formula for a simply connected region withont singulsr points cannot be
multiply valued, 1. e, cannot possess an arbitrary circulation.
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If « instead of 8, is allowed to approach infinity
there is obtained

. b
Lim u(e)=Us=Trt7;
where the origin in the U; plane is referred to the mid-
point of the line segment, and where

T:=er({+1c coth 8)
b=c csch 8

The chord length ¢cy=4b.

In what immediately follows we show how to express
A\, » in the degenerate case in terms of the coordinates
3, y of the airfoil section. These results will be of
value in the later determination of A, p from z, y for
the biplane case.

It has been seen that in the degenerate case (B=o)
the origin of coordinates may be referred to the mid-
point of the chord and

U1=T1+%271 (2)

where the rectangular coordinates in the U, plane are

(271,!/1) i- e., .
U=z

Ty=at"' ({—1ic coth «)
a=c csch « and "=+ 52
Let T, be written in the form

Ty=agirth 3)
Then .
Uy=2,+%1=2¢ cosh (¥,+16,) 4)
where

I1=2a cosh 1[/1 cos 01

‘y1=2a Einh 'l,[/l Sin 01
And upon inversion (cf. reference 1)

2 sin® 6,=p++ /p2+%:

(5)
p’+§

2 Si:ﬂhz '4,!/1=—"p+

-

t=—c cot g where s=A4-ip

where
By equation (1.8)

Hence,

Aip=—2 cot“§=—2 cot™(The~#’+1ic¢ coth a)%
or also

A+tu=—2 cot™! (I+1im) ()]

where

1= cos (6:~7")

m="(e# sin (6:—7)+cosh o)

It is known that

cot“(l+im)=—% log li”—%i%
@C+m2—1)24-48 1 2l

1 -
==zt T prm_T T2 T

So that finally equation (6) separates into

_ 2l

A=—tanTp ey
(Bmi—1)24-42

[+ (m—1)T
These relations express X and p in the monoplane case
in terms of 6, and ¥, and hence by (5) also in terms
Of Ty and Yi.

Similarly, in order to obtain A and u for the degener-
ate case in which a=w, replace a by & (=c¢ csch 8)
and let

M

1
p=5 log

Ty=-etr (-+ic coth B)
=—pev¥atifa

@)
Then finally A and p are given by equation (7) in which

= l2=% evs cos (0;,—)
: (0
me=me=" (eh sin (§;—~)—cosh ﬁ)

Inversion of equation (2.12).—It is quite evident
that the direct inversion of the elliptic transcendental
equation (2.12) (p. 52), if at all possible, would be
very laborious. However, an indirect method which
employs the results of the degenerate cases and which
performs this inversion readily, to any degree of
approximation, will now be outlined.

Thus, let a definite biplane arrangement be given
(fig. 5(a)). The chords or line segments ¢; and c; may
first be chosen in the following convenient manner.
Let the chord ¢; be defined by the line F}Fy/, where Fy
is the midpoint of the distance between the leading
edge and the center of curvature of the leading edge
and Fy’ is the midpoint of the distance between the
trailing edge and the center of curvature of the trailing
edge. It is observed at this point that the only theoret-
tcal restriction upon the choice of the chords is that the
singular points (the end points of the line segments)
be within the contours, or, at most, on the boundaries
themselves. The above-mentioned choice is one
merely of convenience, the object in view being the
defining of & smooth (A, u) relationsbip. (In reference
1, o similar situation is described in deteail.) The
above-outlined procedure may be also applied to
determine the chord ¢; of the lower contour of the
biplane cellule.™

1t In the event that the chords so determined are almost, but not quite, parallel
it s of some advantage numerically to vary from the foregoing procedure suf«
ficfently to cause the chords to become exactly parallel and to maintain approxi.
mately the foci Fand F'. Small variationsfrom the cholce of chords outlined are of
minor importance and will not affect the smoothness of the (A, u) relationship.
The desirabllity of maintaining the chords exactly parallel, if they are reasonably

parallel to start with, is due to the circumstance that elliptio functions of the sec-
aond kind are then avolded.
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The chords ¢, and ¢, baving been conveniently chosen,
it is possible to determine uniquely by means of the
charts outlined previously (fig. 4), or indirectly from
the equations themselves, the values of the constants
@, B, v, and 8. The quantity ¢ may be regarded
throughout as a convenient unit reference length. -

Equation (7), it will be recalled, for these values of
a, B, v, and §, determines the values of A\ and g (in
terms of the rectangular coordinates of the profile
sections), which in the degenerate cases correspond to
profiles geometrically similar to the upper or lower
profiles of the given biplane cellule, the only differences
being that the chords are da=+c csch a and 4b=
4c csch B, respectively. When, howerver, the values of A
and p thus determined are inserted in equation (2.29)
(employing the proper periods 20=2r, 20'=
21 (a-+pB) ) there is obtained a biplane arrangement
which has, necessarily, the required chords and position
(1. e., the proper skeleton) and around this skeleton
has generated contour shapes A, and B, which, in
ordinary cases, are almost identical with the given
original contours A4, and B,. Thus, the use of the
values (A, p) of the degenorate cases in the biplane
analysis is equivalent to a replacement of the original
biplane arrangement by a new arrangement defined by
the contours A; and B,. The differences between A,
and A,, and B, and B, are remarkably small in prac-
tice. Mathematically the foregoing procedure repre-
sents, however, only & first, although important, step
in a process of successive approximations which we
outline as follows.

Consider only A, and A,. The contour 4; defines,
by means of equation (7), a new degenerate (), u)
relation, The differences between this new (A, g)
relation of A; and the original degenerate (), i) relation
of A, is a proper criterion of the differences between
the contours 4, and 4, themselves since, if these (A, u)
functions coincide, the contours must coincide. Hence,
by a shifting process similar to that commonly em-
ployed in methods of successive approximations, the
first approximation to the desired (A, u) relation of A,
(this first approximation has been here considered
to be the degenerate (), x) relation itself of A,) may
be corrected by these differences to give a second and
better approximation. The process may be repeated %
times, if necessary, until the degenerate (X, ) relation
of A, coincides with the degenerate (A, p) relation of
Ay, hence A, coincides with A, and therefore the
actual (), u) relation that defines the contour A
itself in the biplane case (i. e., by equation (2.29)) is
the desired (A, u) relation of A4,.

Singular points in the monoplane case.—The mono-
plane case may also be useful in obtaining ths singular
points of the biplane transformation to a good first,
approximation. From equation (2):

2
U1= T1+9T;
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the singular points are given by

dUl a?
. ar,=0=1—7p
or by
T,+a
Since by equation (3)
T1=ae\h+“’l

it is evident that the singular points correspond to
(¥1, 6,)=(0, 0) and (0, =), respectively. On replacing
¥: and 6; in equations (6) and (7) by these values it
ig seen that the singular points (A=2,) of the upper
chord (u=«) are given by
’ sinh « cos 4/
14 cosh asin v’ @)
Similarly for the chord of the lower profile (u=-—g)
we get

—tan A\,=

__sinh fcosy

ten k’_I:I: cosh 8 s v )

It may also be useful to note that to a first approxi-

mation (the approximation being better the greater

a+p) the chords of a biplane cellule are given by

c;=4c csch «, ¢;=4¢ csch 8. Hence the chord ratio is
approximately

¢;_sinh 8
¢; sinh « :

It has been shown thus far that the degenerate mono-
plane case may be of value in the determination of
u and A for a biplane cellule. The limiting forms of
the simultaneous integral equations will now be briefly
discussed.

Forms of the integral equations (3.23) and (8.24)
for the monoplane case.—Consider the simultaneous
equations (23) and (24) of section 3, which define
the distortion of two contours from two circles.
Let g/'=—0g3=w, 1. ., Bs==0, the interior circle of
figure 5 (e) degenerates to a point. It is seen then
that the Laurent series, equation (3.6), becomes a
one-way ascending powerseries and @_,=A_,+4iB_,=0.
We have also since r=a’+8’=w that equations (3.21)
and (3.22) give

7 ’ 1 90_?’,
Z(p—¢")=0, Zi(p—¢')=73 cot *

Equations (3.23) and (3.24) then reduce to a single
equation

0:(e")=Bo—3- | File) cot £y

(9

or also .
0:(6")=Bo+3 | (o) log sin| 257

de (9')
Equation (9), considered as an integral equation,
enables the transforming of the contour of a simply
connected region into a circle. ‘The process of iteration
outlined in the preceding section is directly applicable
in this eimpler case. (CI. reference 1.) The constants
Aq, By, and ¢,=a’ may be determined, as before, from
equations (3.32) and (3.33).
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In the event that «’=w, the outer circle of figure
5(e) becomes infinitely large, 1. e., Ry=w. Then the
Laurent series (3.6) becomes a descending power
series and a,=A,+iB,=0. With f,=¢,=0 and
r=o we find that equations (3.23) and (3.24) reduce to

gV =Burt3= [ Tale) oot L5 do (10)
or also
0:e)=Bi L [fuo) logsin 258 dp 01

The functions g;(¢) and g:(¢), determined by equa-
tions (9) and (10) by separate treatment of the two
monoplane cases, may when known be employed as a
convenient initial approximation (cf. footnote 9) in
the more general case.

The well-known flow function for a single circular
cylinder may be brought into combination with the
results of_this section to yield the flow about an arbi-

spond to the contours of the biplane arrangement and
are not to be confused with the contours K; and K; of
the ¢ plane (fig. 5 (d)) which, in general, are not circles.
The primes will be retained to denote this difference.
The relation between the z and ¢’ planes is (cf. equa-
tion (1.4))

=ici LS o)
Also by the relation
o
t'=—c cot 5 @)

the region external to the circles K’ and K’ is mapped
into a rectangular region in the s’ plane bounded by
the lines 7, and I, (cf. equation (1.8) and fig. 9).
For later reference the relation between s’ and z is also
noted here:

z=ce" (3)

and since z==ce¢**** and 8’=N'4-iu’ it is clear that

I
K’
s’ plane
)

)

1 a { ;
5 ] ) 7T A

T:

I;
yiog
@) (b) ©

T1GURE 9.—Ilustrating the flow reglons In the 2, &, and ¢ planes.

trary single airfoil as has been already obtained in
reference 3. We proceed at once to the more general
case to introduce the flow function for two circular
cylinders into the biplane analysis.

5. POTENTIAL FLOW ABOUT THE BIPLANE CONTOURS

Potential flow around two circles.—It has thus far
been shown how the two contours of a biplane arrange-
ment, in & % plane, may be transformed into two con-
centric circles in the z plane. It is desirable in what
follows to transform the concentric circles C; and C; of
the z plane into the coaxial ones K,” and K3’ in & ¢ plane
(fig. 9). The circles K;’ and K’ will thus also corre-

o @)

Hence the boundary lines /,” and ;' are given respec-
tively by
W=d'=0y, p'=—f'=0,
where
a'>0, />0

(It will also be recalled from section 3 (cf. line following
equation (3.16)) that ¢y—oy=c'+6'=71.)

In a noteworthy paper (veference 4) Lagally has
given the complex flow potential for uniform flow past
two circles. His formula makes use of the interme-
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diate 8’ plane and the complex flow potential in the s’
plane, is given by

(s =£—-1r,s’ 41;[% loga(s,af;)iﬁ,) +<1 —4ﬁ;m>s']

—2cum|:s“(s’) +¢ (8" 428" —%ms’]

+2icv = [¢(87) —£(s"+2i67)] ©®)
In this equation I'==—(I';+T';) where I'; and T's-are
the individual arbitrary circulations about K’ and K/,
respectively (see fig. 9; the positive direction of T'; or T,
which is opposite to that of T, is chosen such that as
one traverses the contour in this direction the flow
region is on the right). The symbol I’ denotes the
‘‘countercirculation” I'=TI;—T:;. The velocity at
infinity is %, 4. The periods of the elliptic func-
tions are, ag in section 3, 2w, =27, 20;=21(c’ +p')=2ir.
Equation (5) shows directly that the whole flow is
built up by linear superposition of four separate flows,
for each of which one of the quantities T, IV, u,, and
9, i8 different from zero.
In the first partial flow with the factor I, both cir-
culations are equal and opposite about the two circles,
I
1‘1=—1"2=%- The streamlines are the circles of the
coaxial pencil. The velocity at infinity is zero. In
the second partial flow with the factor I, the two cir-

culations are equal. I‘1=I‘,=—g- The velocity at

infinity is again zero. The third partial flow with the
factor u,, is a translatory flow without circulation,
normel to the line of centers of the two circles. The
fourth partial flow with the factor v, is a translatory
flow without circulation in the direction of the line of
centers of the two circles.

The flow at the surface of the two circles, and the
determination of I and I''.—It is convenient to define
the velocity at infinity, whose rectangular components
are i, and 9, in another manner, by introducing a
magnitude V, and an angle of attack «, (ig. 9 (c)).
Lst

Uo=—V, COS .
9= V. sin a.,} ®)

13 Lagnlly’s formula as presanted in reference 4 employs elliptic functions of periods
e and 3 which are conjugats to the perlods w and w2 employed here, 1. o., ey=eaff,
an={w;. ‘The formula of reference 4 is brought into equation (5) by putting Legally’s
symbols {2, 1, 0, 6qual to &, 7o, — i, respectively.

or, in a single expression,
Ut W =—V e 1

By derivation of equation (5) with regard to &', we
obtain the complex velocity function in the s’ plane as

Wis ')————[2z[r(s'> —t(&+2ip)] 12 o

—2¢V, cos a[p(s )+p(e’+2i8")+2n,/x]
—21cV, sin a.[p(s’)—p(s'+2i8")] (7)

This expression gives the velocity components U, —3V;
at any point of the rectangular region in the s’ plane.
It is & real quantity on each of the boundaries, p'=«,
w'=—p" of the rectangle since these boundaries are
streamlines and the normal flow V; vanishes.

Let us evaluate W for each of the two cases:
(1) 8=N+ia’ corresponding to the boundary I,
(2) 8’=N\—1ip’ corresponding to the boundary ,’. In
case (1) we obtain

W‘=4%.—2£ﬂ_ [’5 [tV +ia)—F (N —ia)] +2’7Tla_%]

—2¢V, cos a[p(N +ie’)+p(N —ia’) 429, /7]

—2icV, sin e [p(N +ia’) —p(N —ia’)] €]
or .
W= L =Ry, o) =20V cos aBa(N, o)
—2cV, sin a By(N, ) 9

where R, R,, and B, are real quantities introduced for
brevity in notation and defined by the following equa-
tions (the primes are dropped for convenience): 13

21]1& 1

Bi(\, @)=t (M i) = (A —ia)]+———5 (10)
sinh « N i
—__+cosh o )‘—421_q,msmh Mma ¢S MA

13 The developments given here for R, R1, and R are rapldly convergent when
7=/’ I8 large, saygreaterthang- Other expanslons are possible (cf. reference
10, p. 4232) and, In certain cases, more desirable. For example, when r Is small, say
less than 2'11: 13 possible by a simple transformation to Interchange the real and
imaginary periods of the elliptic functions (cf. footnote 4) and obtain more rapidly
convergent developinents.
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B\, @) =p(\-+ia)+p(A—ic) +21 (11)

_1—cosAcosh @

= mq2m
_m-tiE@cosh ma oS MA
1

(12)

m
mg* sinh masin mA

Ry(\, a)=i[p(A+1a)—p(A—ia)]
1—g¢*=
where

__sinhsinha N
" (cosh a—cos A)?
1
g=er
In case (2) there is obtained similarly
™ T
Wa=g—t+ - B:(N, ') —2¢cV. cos aR:(N, )

+26Vc sin acRS()"y ﬁ,) (13)

In order to specify the circulation I and the counter-
circulation IV, we make use of the Kutta-Joukowsky

. T T/ .
Solving for 5r and iin (14)
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condition for finite velocities at the sharp trailing edges.
Equations (9) and (13) must vanish for the particular
values of A\’ that correspond to the trailing edges of the
upper and lower contours of the biplane combination.
Let X\’ and M.’ be the values of A corresponding to the
trailing edges of the two contours. Then we have

™ T
W()‘l,) a’)=4_ﬂ_'_2_1|:R“—2CVc cos acRﬂ

—2¢V, sl =0
cV. sin a Ry, (14)

T/ T
W, ﬁ')=z;+ﬁRu—2ch cos a.Rss
+2¢V, sin a,R3,=0

where the R’s with double subscripts are constants
defined as follows. (See equations (10)— (12).)

11=R1()\1', Ol'), R21=R2()\1': a'), R11=R3()\1’; a')
R12=R1()\2', /3'), R22=R2()\2’7 ﬁ'), R32=R3()\2': ﬁ,)

27

1__2 V COS ac(Rn—Raz)‘*‘Sin & (R31+R82)
- Ve R11+R12

(15)

z_’=2cva|:003 o (R R2e+ Ry
T

In order to obtain the angle of zero lift 8., in the
plane of the circles, we equate !* =0 and solve for the
particular value of the angle of attack «., which is

denoted as —8. Q. e., for a;=—8,, I'=0). Then we
have at once from (15)
___Rn—‘Rzz
tan ﬂc_ 3l+ 32 (16)

with this definition of 8., the total circulation may be
expressed as
I'=—4xcKV, sin (a.+8.)

where the constant K is

1 Ry 4Ry
cos B Bu+2Bs

(17)

K

(In the limiting cases f'= o, a’= =, ¢K is equal to
¢ csch ' or ¢ csch §/, respectively, which are the radii
of Ky’ or K,’, respectively.)

Similarly, the angle v, may be defined as the angle of
attack for which countercirculation IV vanishes (. e.,
for ¢g=—1v,, I'=0.) Then from (15)

_R11R22+R21R12

11ib32™

tan y.= (18)

314412
and I'¥ may be expressed as

14 The values of Ay’ and Ay may be determined as follows: Let ; and A; denote
the values of A(~—¢) that correspond to the end points of the ckords, L e., A1 and
A1, or —6; and —#6s, are the singular points of equation (2.12). Then the values of
A'(=—g) corresponding to A; and As are given by A’ and Ay, or —¢1 and — ¢z, where
(cf. sec. 3) pr=61—p1, o, aNd P3=6s—02, 4y

U The totallift Is, as in the monoplane case, L=pVT'{cf. p. 25) per unit spanlength.

ng)—sin ac(RuRaz—RalRu):I

-R11+-R12
I=—8=cJV,sin (a,+7v.)
where the constant J is

(19)

1
CO8 Ve

RllRai—RSIRI’A'
R11+R12

Velocity at the boundary contours of the hiplane
combination.—Let the complex potential function in
the plane containing the biplane contours (u plane)
be @, then the complex velocity function is

J=

(—iq—‘=n,—-io, (20)

or
v=+oFer={7]

where 9, and v, are the velocity components in the

direction of the coordinate axes in the % plane. Intro-
ducing the intermediate planes, we have
de_de ds’ dz dwds 1)
du ds"'dz dw'ds du

It is first of importance to consider the changes
that a velocity at infinity in the % plane undergoes
when transformed to the ¢ (or 8') planes. (It will
be recalled that u==o corresponds to t=w, §=0,
w=¢, z=c¢, 8'=0, '=w.) Let —Ve* denote the
velocity at infinity in the % plane and, as before,
—V.e~'® depotes the velocity at infinity in the ¢
plane. (See figs. 9 and 10; the velocity magnitudes
are V and V, and the angles of attack are o, and «,,

respectively.)



POTENTIAL FLOW ABOUT ARBITRARY BIPLANE WING SECTIONS 71

Then noting equations .(2.10) and (3.29) it is found
from (21) that
V=rV ] 22)

ac=aytv+§

where » and £ are determined by equation (3.31')
(r is generally near unity, £ near zero), and v is the
angle of stagger of the biplane chords.

The angle of zero lift for the biplane combination

is given by
Bo=B.+71+%

i. ., for ay=—f, the lift vanishes.

In order to determine the velocities at each boundary
contour of the biplane combination, it is sufficient to
obtain the magnitudes of the individual terms in
equation (21) at each boundary. For the upper
profile we have by equation (9)

dQ
el
From equation (3)
dx”_l_l_l
dzl™ |z

o= (1+9LY +(L) | 11 cos v+’ sim 1+ (@ cos v-+Qy sim 27

From equation (3.40) or (3.40%)
]
or also
e ()
. 2| 1—%i

From equation (1.7)

21}
=
And from equation (2.32)

=Py cos 7+P sin )*
+(@ cos v +@Q,’ sin ¥)*f}
(The subscript 1 in P,, P/, @1, and @," denotes that
the values of (A, p) which define the upper contour are

to be used.) Hence, finally for the velocity », at any

point (z, ¥) or (A, u) of the surface of the upper protile
there 1s obtained

(23)

Similarly for the velocity at each point of the surface of the lower profile

o= (1452) +(L) 1P cos 1+ Py sin )+ (s cos v+@y sim 7

It may be worth while to point out in résumé of
equations (23) and (24) that these relations do contain
the necessary parameters for the study of the potential
flow in any doubly connected region. It is observed
that the uniform stream velocity V and the angle of
attack g for the biplane cellule occur only in W, or W,
(equations (9) and (13)) and are related to the velocity
V. and angle of attack «, for the two circles in the ¢’
plane by equation (22). The circulation T' and the
countercirculation I/, also occur in W; and W;. These
circulations are, in general, arbitrary but may be con-
sidered specified or fixed in the case of biplane con-
tours by equations (17) and (19). The parameters
@, B, v, and § determine the position and attitude of
the profile chords, i. e., the gap/chord, chord ratio,
stagger, and decalage. The variables A, p define the
shapes of the contours, having the chosen line seg-
ments as chords. The functions f and g furnish the
means of transition from the two arbitrary contours
to two circular boundaries (i. e., from 68, p to ¢, o).
The parameters ¢’ and f’ determine the radii of the
circles and are fixed by the local conditions at z=c¢
corresponding to the region at infinity (equation
(3.29)).

(24)
The local superstream pressure at points of the

boundary surfaces, in terms of the dynamic pressure
of the uniform stream, is given by

o) 5-0)
e \V/)'¢ TV
1

q=3pV?

(25)
where

The general formulas can be somewhat simplified in
coertein special cases. For example, in the case of
biplane contours described about parallel segments as
chords the parameter §=0 and, in addition, if the
chords are equal, a=§.

Application may be made of the Blasius formulas for
obtaining the fotal lift of the biplane combination. It
is readily found that the total lift is, as in the mono-
plane case given by L=pVT per unit span length, where
T is the total circulation, and the lift vector L is
perpendicular to the direction of the uniform stream V.
The total integrated moment as well as the forces on
the separate contours may also be developed without
regard to the local pressure formula (25) though the
expressions are not of particularly simple forms. In
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the special case of biplane combinations composed of
the framework of the line segments themselves, the
formulas for the forces and moments will reduce some-
what. These and further special applications are
reserved for the future.

As an example of the application of the formulas
presented in this paper the pressure distribution for the
biplane cellule shown in figure 10 (N. A. C. A. 4412 air-

y

_ >

Fieure 10.—Biplane arrangement (N. A. O. A. 4412 section).

foil section) is developed. The curves representing the
J1, Go, 1, 2nd e functions are shown in figure 11. The
pressure distribution is given in figure 12 for values of
the biplane combination lift coefficient: Cr=0, 0.5,
1.0, and 1.5. The pressure distribution for the mono-
plane case (cf. reference 14) is also presented for
comparison. The numerical procedure is outlined
under table I.

LANGLEY MEMORIAL AERONAUTICAL LIABORATORY,
NaTtroNaAL ApvisorY CoMMITTEE FOR AERONAUTICS,
LaweLey F1eLp, Va., June 8, 1935.
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EXPLANATION OF TABLE I

Table I presents in outline the numerical procedure
in obtaining the velocities and pressures at the
boundaries of the biplane combination shown in figure
10. The gap/chord=0.825, stagger/chord=0.580,
chord/chord=1, and the decalage=0. The param-
eters a, B, v, and § are: a=f=1.4436, y=—30°, and
§=0. The rectangular coordinates z, y of the profiles
are given in columns 1 and 2. (c=unity.) The
values of A, p which correspond (i. e., satisfy equation
(2.29)) are given in columns 3 and 4 and have been
calculated by the method outlined in section 4.
The constants A,=0.0467, By=-—0.0106, r=1.025,
f=-—0°3’, o'=1.333, '=1.303, r=2.636 and the
angular distortion functions g; and g, (column 5) are
determined by the method outlined in section 3.
Column 6 presents the angle p=0—g where 6=—AX.
The functions R,, R;, and R, given in columns 7, 8,
and 9 are determined by equations (5.10)—(5.12).

Column 10 gives the quantity h=[(‘ + 3% 1+(§_{0>T

for each profile obtained graphically. (See fig. 11.)
Column 11 gives the quantity k=[(P cos -+
P’ sin v)*4-(Q cos v1+@’ sin v)*]"# for each profile. In
determining the next column, we require the singular
points of the chords as determined by equation (2.22),
k1=91°4g', )\2=40°58,. Hence ¢1=—93°22,, Pr=
—35°14’ (cf. footnote 14). The constants occurring
in equation (5.14) are then B,;=0.3444, R.,=0.2617,
R3|=0.3659, R12=0.9431, R22=—0.4890, R31=0.7117.
Equation (5.16) gives then 8,=34°51" and equation

(5.17) determines K=1.020. The circulation is now

=—4mcV,(1.020) sin (a,+34°51’). Equation (5.18)
determines 4,=38°5’ and (5.19) gives J=-—0.0987.
The countercirculation T'=8#cV,(0.0987) sin (a.+
38°5’). The lift coefficient may be expressed as Cp=

q(é’;gf )where 9=%pV 2, The chord for each profile in

the example considered is equal to (2.106)c, hence
Cr=—2%(0.985) sin (a.434°51’). (In the mono-
plane case the lift coefficient for the N. A. C. A. 4412
airfoil in two-dimensional potential flow is obtained as
(cf. reference 14) 2x(1.114) sin (a+constant) or the
slope of the lift curve in the monoplane case is about
13 percent greater than that in the biplane example
treated). Putting Cr=0, 0.5, 1.0, and 1.5, respec-
tively, the angles «, are determined as a,=—34°51’,
—30°8/, —25°24’, and —20°35’, respectively (. e.,
by equation (5.22) ap=—4°48’, 0°5’, 4°33’, 9°22',
respectively). Columns 12-15 of the table give

the values of 2—2’% and % for the foregoing four values

of a, and are determined by equations (5.9) and
(5.13). The velocities at each profile surface », and
v, are given in terms of the stream velocity V by the

formulas (5.23) and (5.24), v Wlhlkl

= L
v="5v d y

Wghﬂkg. . z_;_ & .
2V The pressure ratios 7 and 7 shown in figure

12 are given by equation (5.25).
The Smithsonian Tables of Hyperbolic Functions
were found useful in the numerical work.



POTENTIAL FLOW ABOUT ARBITRARY BIPLANE WING SECTIONS

TABLE 1. BIPLANE ARRANGEMENT N. A. C. A. 4412

(SEE FIG. 1Q)
A. UPPER PROFILE

Cr=0 CL=0.5 | Co.=1.0 | CL=1.5
z ¥ A B [ ¢ (=—2)| Ri\) R\) | RaV) h ky W LA W W
2%V =V =V 2%V
UPPER SURFACE
o r o r -] ’
1, 6458 08731 | -39 4 L3132 | -1 34 40 38 0.8627 | —0.3685 | —0.6883 L1063 7.840 | —0.0870 0.0574 0.2021 | 0.3434
168121 L9195 | -20 38 13088 | ~0 61 30 27 L6908 | —.8870 | —.6880 1.076 4.160 127 L2840 4459 .6013
5830 370 -2 6 L3099 | —0 34 23 40 L0225 | —~.6687 | —.5072 1. 076 3250 . 2181 .3778 . 5410 6918

1, 5282 B4 21 7 L3111 | —0 18 n B 1.0803 | —~.7922 | —.5305 1.070 2,422 <3424 . 5341 8004 . 8533

14742 0836 | ~17 22 13118 0 12 17 10 L1097 | —.8541 -—.4931 1 034 2.112 ~AM7 5978 . 7678 5291
. 4108 10088 | —14 2 1.3061 0 18 13 44 L1251 —. 0108 | —.3652 1052 1.858 . 5443 .23 8764 | L0302

L3140 L0323 | —8 43 1.3068 0 34 8 9 11630 [ —.0777 | —.2285 1.037 1.585 L6784 .8429 L0027 | 1.1519

1,2084 L0304| —4 8 13080 0 47 3 21 11766 | —1.0083 | —.0850 L1038 1.424 7708 . 9875 10800 | 1.2307

1, 0000 1. 0604 3 583 L3117 1 10| —4 3 1.17563 { —1. 0064 . 11468 L 047 L 267 . 8969 1. 0400 L1770 | 1.3017
L7021 1 0690 11 14 13181 1 28|12 40 1.1406 | —.9257 . 8407 1. 054 1.198 . 9599 1. 0808 L1852 | 1.2071
.5731 1.0460 18 42 L3251 1 47| —-20 28 L0334 | —.7958 5051 1030 L244 L0472 1. 0382 1.1386 | L2190
. 3709 1.0335 2% 85 L83, 32 1|—-27 56 1.0092 [ —. 68127 1039 1.311 8828 . 9611 L0336 | 1.0940
1745 1. 0038 34 8 13408 2 13| —36 21 L9138 | —. . 6787 1.038 1.477 . 7678 .8258 . 8788 L9213

-, 0314 . 95660 43 54 1.3514 3 35| —48 20 T2 | —. . 6852 L024 1.829 . 6019 . 6368 .6738 . 6095
-, 2180 . 9340 57 2 1,3078 2 B2 59 H4 L6380 | —.0274 . 6224 L013 2.748 . 3834 .4033 4204 4314
-, 3364 . 8052 68 &8 1.3818 2 58| —69 54 . 5357 .0836 5401 .888 4.184 <H2B . 2530 . 2625 <2672
LOWXR 8URFACE
—, 4280 0, 8857 83 54 1.4333 1 28| —95 20 0.3342 Q. 2707 Q.3507 0.904 85 —0.0162 | —0.0184 | —0.0165 |—0. 0188
—. 3046 8035 127 10 L4364 | -1 38 |—128 7 . 1633 . 3560 . 1767 . 957 5248 —.1865| —.1808 | —.1917 | —. 1038
-, 1801 8818 | 143 31 1.4345 [ —1 32 (—141 &9 « 1570 . 3590 . 1197 .978 4.463 | —. 2207 | -—. — 248 | —. 2257
. (359 . 169 13 L4274 | —1 80 |—167 14 1218 . 3601 .0343 . 990 3.656 | —.2m6 | ~—. —. 2768 | —,
+ 2650 .8620 |—~169 13 1.4208| -2 10 171 23 . 1199 3608 | —.0234 O 3243 —.3111 - ~.3014 | —.
+4680 .8455 [—~150 & L4128 | —2 11| 152 16 . 13356 .3672 | —.0798 SO 3.021 | —.3412| -, —.3139 | —. 3092
. 6668 .8408 (—138 7 L4078 | —2 22| 135 30 . 1699 L3547 | —. 1412 Lo 2700 —. 3662 | —.3498 | —. —. 3101
. 8808 . ~116 16 13088 —2 20| 118 44 <222 L3834 | —.2178 993 2739 | —.3024 | —. —_ —. 3040

1,0812 .8212 |—100 40 13830 —2 30| 103 10 . 2878 <2000 | —.2087 904 273 | —.4112| ~—, - —. 2843

L2812 .8148 | ~84 &7 13710 —2 30 8 . 3887 <2309 | —.4117 .998 2.824) —.4101| —.2601| —. —. 2354

13763 8083 | —-77 17 13808 | —2 30 79 47 477 .1810 | —.4708 990 2003 | —.4120 | —.3417| -—. -—. 1950

1. 4002 .8125 | —68 40 1 3520 -2 30 7 10 . 5238 .1 —. 5391 1.001 3.367 | —.3890 — —.2181 | —. 1308

1. 5158 .8149 | —63 &8 L3463 | —2 28 66 6 . 5730 L0520 ( —.5783 1. 005 3.714| —.3675| —. —. 1773 | —. 0810

1. 5621 L8209 [ —58 39 L3418 | —2 22 61 0 . 6281 —. 0123 | —.68180 1014 4.330| —.33858| —. —. 1281 | —. 0207

6068 8320 | —-52 11 L3340 | —2 18 54 29 L6913 | —. 1 —. 6548 1. 031 5,250 | —.2800| —.1681 | —.0452 .0718
1,6287 8430 | —47 41 L3200 ~2 4 49 45 L7585 | —.1801 -—. 6759 1.040 6.000 —. - . 0289 .1548
1. 6488 L8731 | —89 4 13132 —~1 34 40 38 .8627 | —.3685 | —.6883 1083 7.840 | —~.087 . 0574 . .8434

B. LOWER PROFILE
. CL=0 | CL=05 ) C.=10| CL=L5
z b4 A -8 [} ¢ (=—2)| REi(\) Ri\) Ri(\) ha ks Wa Wi Wi Ws
22V 2V 2V 26V
UPPXR SUEFACE
-] r -] r -] ’

0,4440 | —0.8608 | —93 23 L2379 10 332 82 51 0. 4168 0.2164 | ~0.4584 1.022 11.758 Q. 0899 0.0217 | —0.0467 |—0.1145
.4006 | —.8025 |—110 37 1,1703 8 51| 101 46 L2024 23021 | —.8209 L12 6,018 —.0188 | —1108| —.1628 | —.
3701 —. 7807 |—-117 23 1.1518 7 48| 109 35 . 2600 L8251 | —.2095 L138 5.984| —.1073| —. 1400 ) —.2000 | —.
L3191 —. 7408 |—137 47 1,.1375 6 15| 121 32 . 2008 70| — 2044 1158 5010 | —.1624 | —.2007| —. -
L2012 | —.7269 |—136 12 1.1102 4 371 131 86 .1683 L3583 | —.1689 1.170 44851 — 1977 | — 2307 | —. —. 2017
L2050 | —.7153 |—143 24 1. 1050 3 23| 140 11 1464 .3658 | —.1216 1173 4.238| —. —_ -_ —. 3058
L0911 | —,688) |—158 50 1. 0044 1 8| 1556 42 1231 .3716 | —.0720 L1758 3819 | —. —. 28181 —.3038 | —.

-, 0218 -, —168 55 1, 0880 -0 14| 169 @9 1118 .3768 -. 0313 1.176 3. 575 - —_ ~. 3238 | —.
—.2419 | -, 169 35 1.0976 | —4 35 |—165 O L1127 38738 L0377 1.160 241 | —. - —.3511 | —. 38614
—~, 4566 | —. 160 30 L1308 | —7 27 |—-143 7 .1402 . 3669 .1103 L121 3012 —. - - —. 3872
—, 6711 —. 6768 | 132 38 L1741 —9 30 ([—123 & .1923 .3502 .1928 1.070 2836 | —.8019| —, —.4001 | —. 4133

- - 7016 | 117 11 12191 | —10 20 |{—108 51 . 2663 . 3080 . 2893 1.018 2718 —. 4125 - —.4253 | —.

—1.0860 | —.7333| 101 51 12648 | —10 34 | —91 17 .3513 . 2656 . 3886 .988 2616 —. —_ —. 4438 | —.
—1.2628 | —.7713 86 33 L3110 | —10 26| —-768 6 4740 . 1680 . 5146 .957 2735 | —.4247 | —.4280 | —.4285 | —. 4234
—1.4622 | —, 8149 70 2 L3584 | -8 28 ) —60 38 .6309 | —.0058 .6419 808 3U3| —. —_ —.35643 | —. 3463
-1.5580 | ~.8391 59 87 13855 | —8 23| —51 34 L7368 | —.1492 . 6902 .881 4812 —.2715| ~—. —. 2869 | —.2680

LOWER SBURFACE

—1.6490 | —0.8664 38 16 1.4371 -5 25| —33 61 0.9382 | --0.5229 0. 7030 0.832 33 0.0330 0.0337 0.0320 | 0.03567
—L 5128 —. 8850 21 30 1. 4404 -2 8| -—-19 22 11317 —. 8647 . 5370 .820 2.768 4140 4020 .3872 3749
—1.4050 —, 8708 4 20 1. 4390 -1 0| -—13 20 1. 1648 —. 9584 3822 .548 1902 . . 5638 5284 5058
—~L2189 | ~.8742 4 8 1.4375 0 18| —4 28 1.2058 | —1.0546 L1341 .854 1.488 . . 7574 7140 .6727
—. 08471 —.815| —4 8 1, 4335 1 456 2 23 12002 | —L 0634 | —.0728 .863 1.807 . 9188 . 8658 8020 . 7528
—, 7785 —. 8861 | —11 389 1.4311 2 3 0 6 1.1890 | —1.0151 - .862 1.247 277 . 8466 . 7820
—_ —. 8010 | —18 48 1. 4279 3 3 16 17 1.1500 - —. 4288 .861 1.259 1.0100 . 6329 8399 . 7034
—. 3640 | —.0033 | —26 43 1.4188 4 45 21 58 L0329 | —. — .880 1.342 . 9827 8853 . 7921 . 7052
— 1681 | —.0125| —-35 7 L4082 5 48 29 2 10126 | —. — .859 L 524 024 . 8064 . 6908 6030
L0813 | —.0201 | —45 13 1.3019 7 6 38 7 0056 | —. —. 7214 .862 1. 905 . 7654 . 6674 . 5632 AST7
L1402 | —,0246 | —50 &7 1.3776 7 50 43 7 JB425 | —. 3161 | —. . 869 2241 . 6787 5787 .4763 L3718
L2610 -, -5 13 1. 3600 8 41 49 32| - .7618| —.1884 | ~—. .882 2 898 . 5634 . 4667 . 3858 . 2856
L3014 | —.0213| —62 39 1.3474 9 10 58 29 7186 | —. 1157 | —.6891 .889 3.408 4943 .3998 .3022 2044
L3514 —.01562| —68 6 1.3325 9 41 58 25 .6855 | —.0370 | —.6375 . 900 4.351 <4117 .3579 273 .1330
. —. 0037 | =75 27 1. 3094 10 10 65 17 . 5788 L0567 | —.0052 921 6.340 . 3057 ~2207 L1337 L0474
A28 | —. —8l 7 1.2007 10 33 70 34 . 5260 L1148 | —.5614 .985 8.770 <2323 .1623 L0710 | —. 0099
A0 | —. -8 23 1.2379 10 32 82 51 .4168 2164 | —. 1023 11758 . 0899 L0217 | —.0467 | —. 1145

75



